- 2022-02-11 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
小学六年级奥数教案:统计与概率(学生版)
学科培优 数学 “统计与概率” 学生姓名 授课日期 教师姓名 授课时长 知识定位 在我们日常生活中,通过对统计数据的分析,我们可以了解某一情况,作出某些决定,如根据商场销售量的统计数据,决定如何进货;也可以由部分个体的情况了解总体的情况,如通过抽样调查了解我国人口状况等;还可以对现实生活中的某些现象作出判断,如评判游戏活动的公平性、获奖的可能性等;还可以对一些事物的未来状况作出预测,如预测次日下雨的可能性等. 在数学内部,概率统计与其他分支的结合,使数学科学出现了许多新进展,如具有广泛应用性的蒙特卡罗方法等. 在其他领域,概率统计也发挥着日益重要的作用,如考古工作者可以通过统计数据分析一件文物的年代;文学工作者可以通过两本著作中部分词语的使用频率分析作者的写作风格,并判别它们是否出自同与作者;自然科学工作者可以通过概率统计分析,提出一些理论假设,以解释一些自然现象. 知识梳理 一、基本概念 在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。 从总体中所抽取的一部分个体叫做总体的一个样本。样本中个体的数目叫做样本的容量。 总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。 二、概率的定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 普遍认为,人们对将要发生的机率总有一种不好的感觉,或者说不安全感,俗称「点背」,下面列出的几个例子可以形象描述人们有时对机率存在的错误的认识: ■1. 六合彩:在六合彩(49选6)中,一共有13983816种可能性(参阅组合数学),普遍认为,如果每周都买一个不相同的号,最晚可以在13983816/52(周)=268919年后获得头等奖。事实上这种理解是错误的,因为每次中奖的机率是相等的,中奖的可能性并不会因为时间的推移而变大。 ■2. 生日悖论:在一个足球场上有23个人(2×11个运动员和1个裁判员),不可思议的是,在这23人当中至少有两个人的生日是在同一天的机率要大于50%。 ■3. 轮盘游戏:在游戏中玩家普遍认为,在连续出现多次红色后,出现黑色的机率会越来越大。这种判断也是错误的,即出现黑色的机率每次是相等的,因为球本身并没有“记忆”,它不会意识到以前都发生了什么,其机率始终是 18/37。 ■4. 三门问题:在电视台举办的猜隐藏在门后面的汽车的游戏节目中,在参赛者的对面有三扇关闭的门,其中只有一扇门的后面有一辆汽车,其它两扇门后是山羊。游戏规则是,参赛者先选择一扇他认为其後面有汽车的门,但是这扇门仍保持关闭状态,紧接著主持人打开没有被参赛者选择的另外两扇门中後面有山羊的一扇门,这时主持人问参赛者,要不要改变主意,选择另一扇门,以使得赢得汽车的机率更大一些?正确结果是,如果此时参赛者改变主意而选择另一扇关闭著的门,他赢 得汽车的机率会增加一倍。 【重点难点解析】 1. 概率的基本含义 2. 事件总数与满足条件的事件 3. 简单的统计图表 【竞赛考点挖掘】 1. 扇形的统计图表 2. 用排除法解决概率问题 例题精讲 【试题来源】 【题目】在多家商店中调查某商品的价格,所得的数据如下(单位:元) 25 21 23 25 27 29 25 28 30 29 26 24 25 27 26 22 24 25 26 28 请填写下表 价格范围 商品数 所占百分数 20.5 ~ 22.5 22.5 ~ 24.5 24.5 ~ 26.5 26.5 ~ 28.5 28.5 ~ 30.5 合计 【试题来源】 【题目】在一只口袋里装着2个红球,3个荒丘和4个黑球。从口袋中任取一个球,请问: (1) 这个球是红球的概率有多少? (2) 这个球是黄球或者是黑球的概率有多少? (3) 这个是绿球的概率有多少?不是绿球的概率又有多少? 【试题来源】 【题目】 一只普通的骰子有6个面,分别写有1、2、3、4、5、6。掷出这个骰子,它的任何一面朝上的概率都是1/6.假设你将某一个骰子连续投掷了9次,每次的结果都是1点朝上。那么第十次投掷后,朝上的面上的点数恰好是奇数的概率是多少? 【试题来源】 【题目】冬冬与阿奇做游戏:由冬冬抛出3枚硬币,如果抛出的结果中,有2枚或2枚以上的硬币正面朝上,冬冬就获胜;否则阿奇获胜。请问:这个游戏公平吗? 【试题来源】 【题目】有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。请问:这2张扑克牌花色相同的概率是多少? 【试题来源】 【题目】 小悦从1、2、3、4、5这5个自然数中任选一个数,冬冬从2、3、4、5、6、7这6个自然数中任选一个数。选出的两个数中,恰好有一个数是另一个数的倍数的概率是多少? 【试题来源】 【题目】一直口袋里装有5个黑球和3个白球,另一只口袋里装有4个黑球和4个白球。从两只口袋里各取出一个球。请问:取出的两个球颜色相同的概率是多少? 习题演练 【试题来源】 【题目】阿奇一次指出8枚硬币,结果恰有4枚硬币正面朝上的概率是多少?有超过4枚的硬币正面朝上的概率是多少? 【试题来源】 【题目】在一次军事演习中,进攻方决定对目标进行两次炮击。第一炮命中的概率是0.6,第二炮命中的概率是0.8.请问:两炮都集中目标的概率是多少?恰好有一炮击中目标的概率是多少?两炮都未击中目标的概率是多少? 【试题来源】 【题目】张先生每天早晨上班时有1/3的概率碰到堵车。在不堵车的时候,张先生按时到达单位的概率为0.9,吃到的概率为0.1;而堵车的时候,张先生上班迟到的概率高达0.8,按时到达的概率只有0.2.请问:张先生上班迟到的概率是多少? 【试题来源】 【题目】口袋里装有100张卡片,分别写着1,2,3,……,100.从中任意抽出一张。请问: (1) 抽出的卡片上的数正好是37的概率是多少? (2) 抽出的卡片上的数是偶数的概率是多少? (3) 抽出的卡片上的数是质数的概率是多少? (4) 抽出的卡片上的数是101的概率是多少? (5) 抽出的卡片上的数小于200的概率是多少? 【试题来源】 【题目】在标准英文字典中,由2个不同字母组成的单词一共有55个.如果从26个字母中任取2个不同的排列起来,那么恰好能拍成一个单词的概率是多少? 【试题来源】 【题目】妈妈去家乐福购物,正好碰上了橘子、香蕉、葡萄和榴莲大降价。于是她决定从这4中水果中任选一种买回家。爸爸下班时路过集贸市场,发现有苹果、橘子、香蕉、葡萄和梨出售。他也决定任选一种买回家。请问:他们买了不同的水果的概率是多少? 【试题来源】 【题目】小悦掷出了2枚骰子,掷出的2个数字之和恰好等于10的概率有多少? 【试题来源】 【题目】盒子里装着20支圆珠笔,其中有5支红色的,7支蓝色的,8支黑色的。从中随意抽出4支,每种颜色的笔都被抽出的概率是多少? 【试题来源】 【题目】用下图中两个转盘进行“配紫色”游戏. 分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则,才能使该游戏对双方公平呢? 【试题来源】 【题目】小明和小刚改用如图所示的两个转盘做“配紫色”游戏.配成紫色,小刚得1分.否则小明得1分,这个游戏对双方公平吗?为什么? 【试题来源】 【题目】转动如图所示的转盘两次,每次指针都指向一个数字.两次所指的数字之积是质数,游戏者A得10分;乘积不是质数,游戏者B得1分.你认为这个游戏公平吗?如果你认为这个游戏不公平,你愿意做游戏者A还是游戏者B?为什么?你能设法修改游戏规则使得它对游戏双方都公平吗? 【试题来源】 【题目】用转盘(如图)做游戏,每次游戏游戏者需交游戏费1元.游戏时,游戏者先押一个数字,然后快速地转动转盘,若转盘停止转动时,指针所指格子中的数字恰为游戏者所押数字,则游戏者将获得奖励36元.该游戏对游戏者有利吗?转动多少次后,游戏者平均每次将获利或损失多少元? 【试题来源】 【题目】甲乙两人在靶场射击。甲击中目标的概率是0.6,乙击中目标的概率是0.7.两人朝 着同一个目标各射击一次,结果目标被击中了。请问:恰好是甲击中目标而乙没有击 中的概率是多少? 【试题来源】 【题目】口袋里装有3张卡片,一张一面红一面黄,一张一面黄一面蓝,一张一面蓝一面红。张莉从口袋中随意摸出其中一张,发现朝向自己的一面恰好是红色。请问,此时这张卡片的另一面是蓝色的概率是多少? 【试题来源】 【题目】口袋里装有4张卡片,两张两面全黑,一张两面全白,一张一面黑一面白。张莉从 口袋中随意摸出其中一张,发现朝向自己的一面恰好是黑色。请问,此时这张卡片的 另一面是还是黑色的概率是多少? 【试题来源】 【题目】6名小朋友在操场上做游戏,他们被老师分成三组,每组2个人。请问:赵倩和孙莉恰好分到了同一组的概率是多少? 【试题来源】 【题目】某工厂生产了200件商品,合格率是99%,那么从中抽取1件恰好是次品的概率是1%。请问:从中抽查5件,发现瓷瓶的概率比5%大还是比5%小? 【试题来源】 【题目】某人练习射击,在有戴眼镜的情况命中率是20%,没带眼镜的命中率是0%。他在5次射击后都未命中目标,求他戴了眼镜的概率是多少? 陈景润是一个家喻户晓的数学家,在攻克哥德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”.但有谁会想到,他的成就源于一个故事. 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡.几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请.由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课. 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89.每个大于4的偶数都可以表示为两个奇数之和.因为这个结论没有得到证明,所以还是一个猜想.大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的. 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉.……”陈景润瞪着眼睛,听得入神. 从此,陈景润对这个奇妙问题产生了浓厚的兴趣.课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读.因此获得了“书呆子”的雅号. 兴趣是第一老师.正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家.查看更多