- 2022-04-06 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
四年级数学下册各单元知识点(人教版),精品资料2套大全集
四年级数学下册各单元知识点(人教版),精品资料2套大全集人教版小学四年级数学下册总复习知识点1四则运算1、加法、减法、乘法和除法统称四则运算。 2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。 3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。5、加法、减法、乘法和除法统称为四则运算。6、先乘除,后加减,有括号,提前算关于“0”的运算1、“0”不能做除数; 字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0=a 3、一个数减去0还得原数; 字母表示:a-0=a4、被减数等于减数,差是0;字母表示:a-a=05、一个数和0相乘,仍得0;字母表示:a×0=06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=07、0÷0得不到固定的商;5÷0得不到商.位置与方向:1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)注意:1、比例尺2、正北方向3、角的画法2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)3、简单路线图的绘制。4.地图的三要素:图例、方向、比例尺。5.确定方向时:A、先确定观测点(1)从那里出发,那里就是观测点。(2)“在”字后面的为观测点。B站在观测点来看方向。例如:①东偏南25°(标25°的那个角就靠近东) ②西偏北35°(标35°的那个角就靠近西)6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么? 3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)新|课|标|第|一|网二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c =a×(b×c)乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c=a×c+b×c =a×c-b×c②类型二:a×c+b×c a×c-b×c =(a+b)×c =(a-b)×c③类型三:a×99+a a×b-a =a×(99+1) =a×(b-1)④类型四:a×99 a×102 =a×(100-1) =a×(100+2) =a×100-a×1 =a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。③十位:0与9,1与8,2与7,3与6,4与5,结合。2.连减的简便计算:①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74) ②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-743.加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38 146-78+54=146+54-784.连乘的简便计算:使用乘法结合律:把常见的数结合在一起 25与4;125与8;125与80 等。看见25就去找4,看见125就去找8;5.连除的简便计算:①连续除以几个数就等于除以这几个数的积。②除以几个数的积就等于连续除以这几个数。新课标第一网6.乘、除混合的简便计算:第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c =a÷(b×c) 1、常见乘法计算:25×4=100125×8=10002、加法交换律简算例子:3、加法结合律简算例子:50+98+50488+40+60=50+50+98=488+(40+60)=100+98=488+100=198=5884、乘法交换律简算例子:5、乘法结合律简算例子:25×56×499×125×8=25×4×56=99×(125×8)=100×56=99×1000=5600=990006、含有加法交换律与结合律的简便计算:65+28+35+72=(65+35)+(28+72)新课标第一网=100+100=2007、含有乘法交换律与结合律的简便计算:25×125×4×8=(25×4)×(125×8)=100×1000=100000乘法分配律简算例子:1、分解式2、合并式25×(40+4)135×12—135×2=25×40+25×4=135×(12—2)=1000+100=135×10=1100=13503、特殊14、特殊299×256+25645×102=99×256+256×1=45×(100+2)=256×(99+1)=45×100+45×2=256×100=4500+90=25600=45905、特殊36、特殊499×2635×8+35×6—4×35=(100—1)×26=35×(8+6—4)=100×26—1×26=35×10=2600—26=350=2574 一、连续减法简便运算例子:528—65—35528—89—128528—(150+128)=528—(65+35)=528—128—89=528—128—150=528—100=400—89=400—150=428=311=250二、连续除法简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32三、其它简便运算例子:256—58+44250÷8×4=256+44—58=250×4÷8=300—58=1000÷8=242=125X|k|B|1.c|O|m五、有关简算的拓展: 102×38-38×2 125×25×32 125×88 37×96+37×3+37 易错的情况: 38×99+99小数的意义和性质:1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。2、分母是10、100、1000……的分数可以用小数来表示。3、小数是十进制分数的另一种表现形式。4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……5、每相邻两个计数单位间的进率是10。XKb1.Com6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。7、 小数的数位顺序表整数部分小数点小数部分数位…万位千位百位十位个位·十分位百分位千分位万分位…计数单位…万千百十一(个)十分之一百分之一千分之一万分之一…(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),8个千分之一(0.001)。(3)6.378中有(6378)个千分之一(0.001)。 (4)9.426中的4表示4个十分之一(0.1)[4在十分位]8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。wWw.Xkb1.cOm9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。12、小数点的移动小数点向右移:移动一位,小数就扩大到原数的10倍;移动两位,小数就扩大到原数的100倍;移动三位,小数就扩大到原数的1000倍;……小数点向左移:移动一位,小数就缩小10倍,即小数就缩小到原数的;移动两位,小数就缩小100倍,即小数就缩小到原数的;移动三位,小数就缩小1000倍,即小数就缩小到原数的;……13、生活中常用的单位:质量: 1吨=1000千克; 1千克=1000克 http://www.xkb1.com长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米=100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米人民币: 1元=10角 1角=10分 1元=100分 长度单位:千米————米 ————分米 ———— 厘米 面积单位:平方千米———公顷———平方米————平方分米———平方厘米 质量单位:吨————千克————克 单位换算:(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。(2)低级单位转化成高级单位=======除以进率,小数点向左移动。14、小数的近似数(用“四舍五入”的方法):(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。 (3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。(5)在表示近似数时,小数末尾的“0”不能去掉。三角形:X|k|B|1.c|O|m1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。4、边的特性:任意两边之和大于第三边。5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。6、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形。按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)7、三个角都是锐角的三角形叫做锐角三角形。8、有一个角是直角的三角形叫做直角三角形。9、有一个角是钝角的三角形叫做钝角三角形。10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。11、两条边相等的三角形叫做等腰三角形。12、三条边都相等的三角形叫等边三角形,也叫正三角形。13、等边三角形是特殊的等腰三角形14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。16、用2个相同的三角形可以拼成一个平行四边形。17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。小数的加减法:新|课|标|第|一|网 1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)统计:1、条形统计图优点:直观地反映数量的多少。2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。3、折线统计图中,变化趋势指:上升或者下降。4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。 5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。数学广角:植树问题(一)植树问题:1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1 2、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1新|课|标|第|一|网间隔数=总长度÷间隔长度情况分类:1、两端都植:棵数=间隔数+12、一端植,一端不植:棵数=间隔数 3、两端都不植:棵数=间隔数-1 4、封闭:棵数=间隔数(二)锯木问题: 段数=次数+1; 次数=段数-1总时间=每次时间×次数(三)方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4整个方阵的总数目是:边长×边长(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数(五)棋盘棋子数目:1.棋盘最外层棋子数:每边棋子数×边数-边数2.棋盘总的棋子数:每行棋子数×每列棋子数3.方阵最外层人数:每边人数×4-44.多边形上摆花盆:每边摆的花盆数×边数-边数四年级数学下册各单元知识点(人教版)第一单元知识点(四则运算)1.在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)2.在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算) 3.算式里有括号,先算括号里面的,在算括号外面的。4.加法、减法、乘法和除法统称四则运算。5.一个数加上0还得原数,一个数减去0也得原数。6.被减数等于减数,差是0。7.一个数和零相乘,仍得0。8.0除以一个非0的数,还得0。9.0不能作除数。10.在解决问题时,如果列综合算式,必须用脱式计算。11.任何数除以0都得0。因为0不能做除数。第二单元知识点(观察物体)1.如何确定物体所在的位置?(1)明确方向。(2)明确距离。2.根据方向和距离来确定物体的位置。3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。4.平面图形的一般画法:(1)先确定某建筑物的方向。(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)(3)最后确定距离。5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。第三单元知识点(运算定律)1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。用字母表示为:a+b=b+a2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。用字母表示为:a×b=b×a4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。用字母表示为:(a×b)×c=a×(b×c)5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c6.类似于乘法分配律的简便公式;(a-b)×c=a×c-b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)8.在一个带有括号的算式中,括号前面是“+” ,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+ca+(b-c)=a+b-c括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”,“-”变“+”。用字母表示为:a-(b+c)=a-b-ca-(b-c)=a-b+c9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)10.在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a×(b×c)=a×b×ca×(b÷c)=a×b÷c括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c12.另两种简便方法:(1)把一个因数改写成两个一位数相乘的形式。(2)把一个因数改写成两个数相除的形式,然后变成乘除混和运算。第四单元知识点(小数的意义和性质)1.在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。2.分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。3.小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……6.小数的读法:(1)先读整数部分,再读点,最后读小数部分。(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。8.利用小数的性质进行小数的化简和改写。例如:0.70=0.7105.0900=105.09(这是小数的化简)又如:不改变数的大小,把下面各数写成三位小数0.2=0.2004.08=4.0803=3.000(这是改写小数)9.如何比较小数的大小?先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……10.小数点移动的规律:(1)小数点向右移动一位,小数就扩大到原数的10倍;移动两位,小数就扩大到原数的100倍;移动三位,小数就扩大到原数的1000倍;……(2)小数点向左 移动一位,小数就缩小到原数的1/10;移动两位,小数就缩小到原数的1/100;移动三位,小数就缩小到原数的1/1000;……11.把量和单位名称合起来的数叫名数。12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……13.复名数:带有两个或两个以上的单位名称的名数。例如:20元5角8分5吨600克……14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:(1)高到低,乘进率,小数点,向右移,移几位,看进率。例如:1.32千克=(1320)克(58)厘米=0.58米1千克=1000克1米=100厘米高→低低←高1.32×1000=1320克0.58×100=58厘米(2)低到高,用除法,小数点,向左移,移几位,看进率。例如:7450米=(7.45)千米(9.02)吨=9020千克1千米=1000米1吨=1000千克低→高高←低7450÷1000=7.45千米9020÷1000=9.02吨15.求小数的近似数,可用“四舍五入”法。16.在表示近似数时,小数末尾的0不能去掉。17.求小数的近似数的方法:求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。例如:9.953≈10(保留整数)9.953≈10.0(保留一位小数)9.953≈9.95(保留两位小数)23.4395≈23.440(保留三位小数)18.1.0比1精确。保留的位数越多,数就越精确。19.如何把一个数改写成以万为单位的数?方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。20.如何把一个数改写成以亿为单位的数?方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。注:对于改写的方法,同学们灵活掌握。21.下列各数中的“6”分别表示什么?6.32(表示6个一)0.6(表示6个十分之一)0.86(表示6个百分之一)62.32(表示6个十)3.416(表示千分之一) 22.三位小数一定小于四位小数。例如:1.003﹥0.567823.去掉小数点后面的0,小数的大小不变。应该是去掉小数末尾的零,小数的大小不变。24.小数就是比1小的数。例如:10.1﹥125.近似数是0.5的两位小数有5个。近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入”法。)26.近似数4.0与精确数4.0末尾的0都可以去掉。在表示近似数时,小数末尾的0不能去掉。27.小数的位数越多,数就越大。28.小数都比自然数小。29.整数都大于小数。30.0.4与0.6之间的小数只有一个。因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”,千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。查看更多