- 2021-11-11 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018年四川省宜宾市中考数学试卷含答案
2018年四川省宜宾市中考数学试卷 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效) 1.(3分)3的相反数是( ) A. B.3 C.﹣3 D.± 2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( ) A.6.5×10﹣4 B.6.5×104 C.﹣6.5×104 D.65×104 3.(3分)一个立体图形的三视图如图所示,则该立体图形是( ) A.圆柱 B.圆锥 C.长方体 D.球 4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( ) A.﹣2 B.1 C.2 D.0 5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A.2% B.4.4% C.20% D.44% 7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( ) 20 A.2 B.3 C. D. 8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( ) A. B. C.34 D.10 二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效) 9.(3分)分解因式:2a3b﹣4a2b2+2ab3= . 10.(3分)不等式组1<x﹣2≤2的所有整数解的和为 . 11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 . 教师 成绩 甲 乙 丙 笔试 80分 82分 78分 面试 76分 74分 78分 12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣ 20 ,若点B与点A关于y轴对称,则点B的坐标为 . 13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= .(结果保留根号) 14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为 15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则= . 16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 (写出所有正确结论的序号) ①当E为线段AB中点时,AF∥CE; ②当E为线段AB中点时,AF=; ③当A、F、C三点共线时,AE=; ④当A、F、C三点共线时,△CEF≌△AEF. 三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|; 20 (2)化简:(1﹣)÷. 18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD. 19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图. 请根据以上信息,完成下列问题: (1)该班共有学生人; (2)请将条形统计图补充完整; (3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率. 20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部. 20 21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号) 22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n). (1)求反比例函数与一次函数的表达式; (2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积. 23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E. (1)求证:直线EC为圆O的切线; (2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值. 20 24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. (3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标. 20 2018年四川省宜宾市中考数学试卷 参考答案与试题解析 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效) 1. 【解答】解:3的相反数是﹣3, 故选:C. 2. 【解答】解:65000=6.5×104, 故选:B. 3. 【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确; B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误; C、长方体的三视图都是矩形,错误; D、球的三视图都是圆形,错误; 故选:A. 4. 【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2, ∴x1x2=0. 故选:D. 5. 20 【解答】解:如图,∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠BAD+∠ADC=180°, ∵∠EAD=∠BAD,∠ADE=∠ADC, ∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°, ∴∠E=90°, ∴△ADE是直角三角形, 故选:B. 6. 【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x, 根据题意得:2(1+x)2=2.88, 解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去). 答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%. 故选:C. 7. 【解答】解:如图, ∵S△ABC=9、S△A′EF=4,且AD为BC边的中线, 20 ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=, ∵将△ABC沿BC边上的中线AD平移得到△A'B'C', ∴A′E∥AB, ∴△DA′E∽△DAB, 则()2=,即()2=, 解得A′D=2或A′D=﹣(舍), 故选:A. 8. 【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值. ∵DE=4,四边形DEFG为矩形, ∴GF=DE,MN=EF, ∴MP=FN=DE=2, ∴NP=MN﹣MP=EF﹣MP=1, ∴PF2+PG2=2PN2+2FN2=2×12+2×22=10. 故选:D. 二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效) 9. 【解答】解:2a3b﹣4a2b2+2ab3, =2ab(a2﹣2ab+b2), 20 =2ab(a﹣b)2. 10. 【解答】解:由题意可得, 解不等式①,得:x>6, 解不等式②,得:x≤8, 则不等式组的解集为6<x≤8, 所以不等式组的所有整数解的和为7+8=15, 故答案为:15. 11. 【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分), 乙的综合成绩为82×60%+74×40%=78.8(分), 丙的综合成绩为78×60%+78×40%=78(分), ∴被录取的教师为乙,其综合成绩为78.8分, 故答案为:78.8分. 12. 【解答】解:由题意A(﹣,), ∵A、B关于y轴对称, ∴B(,), 故答案为(,). 13. 【解答】解:依照题意画出图象,如图所示. ∵六边形ABCDEF为正六边形, 20 ∴△ABO为等边三角形, ∵⊙O的半径为1, ∴OM=1, ∴BM=AM=, ∴AB=, ∴S=6S△ABO=6×××1=2. 故答案为:2. 14. 【解答】解:∵点P(m,n)在直线y=﹣x+2上, ∴n+m=2, ∵点P(m,n)在双曲线y=﹣上, ∴mn=﹣1, ∴m2+n2=(n+m)2﹣2mn=4+2=6. 故答案为:6. 15. 【解答】解:连接AD,BC. ∵AB是半圆的直径, ∴∠ADB=90°,又DE⊥AB, ∴∠ADE=∠ABD, ∵D是 的中点, 20 ∴∠DAC=∠ABD, ∴∠ADE=∠DAC, ∴FA=FD; ∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°, ∴∠EDB=∠CGB,又∠DGF=∠CGB, ∴∠EDB=∠DGF, ∴FA=FG, ∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k, 在Rt△ADE中,AD==4k, ∵AB是直径, ∴∠ADG=∠GCB=90°, ∵∠AGD=∠CGB, ∴cos∠CGB=cos∠AGD, ∴=, 在Rt△ADG中,DG==2k, ∴==, 故答案为:. 16. 【解答】解:如图1中,当AE=EB时, 20 ∵AE=EB=EF, ∴∠EAF=∠EFA, ∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA, ∴∠BEC=∠EAF, ∴AF∥EC,故①正确, 作EM⊥AF,则AM=FM, 在Rt△ECB中,EC==, ∵∠AME=∠B=90°,∠EAM=∠CEB, ∴△CEB∽△EAM, ∴=, ∴=, ∴AM=, ∴AF=2AM=,故②正确, 如图2中,当A、F、C共线时,设AE=x. 则EB=EF=3﹣x,AF=﹣2, 在Rt△AEF中,∵AE2=AF2+EF2, 20 ∴x2=(﹣2)2+(3﹣x)2, ∴x=, ∴AE=,故③正确, 如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误, 故答案为①②③. 三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17. 【解答】解:(1)原式=+1﹣+4 =5; (2)原式=• =x+1. 18. 【解答】证明:如图,∵∠1=∠2, ∴∠ACB=∠ACD. 在△ABC与△ADC中, , ∴△ABC≌△ADC(AAS), ∴CB=CD. 20 19. 【解答】解:(1)该班学生总数为10÷20%=50人; (2)历史学科的人数为50﹣(5+10+15+6+6)=8人, 补全图形如下: (3)列表如下: 化学 生物 政治 历史 地理 化学 生物、化学 政治、化学 历史、化学 地理、化学 生物 化学、生物 政治、生物 历史、生物 地理、生物 政治 化学、政治 生物、政治 历史、政治 地理、政治 历史 化学、历史 生物、历史 政治、历史 地理、历史 地理 化学、地理 生物、地理 政治、地理 历史、地理 由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果, 所以该同学恰好选中化学、历史两科的概率为=. 20. 【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部, 20 根据题意得:﹣=5, 解得:x=20, 经检验,x=20是原方程的解,且符合题意, ∴(1+50%)x=30. 答:每月实际生产智能手机30万部. 21. 【解答】解:作CH⊥AB于H, 则四边形HBDC为矩形, ∴BD=CH, 由题意得,∠ACH=30°,∠CED=30°, 设CD=x米,则AH=(30﹣x)米, 在Rt△AHC中,HC==(30﹣x), 则BD=CH=(30﹣x), ∴ED=(30﹣x)﹣10, 在Rt△CDE中,=tan∠CED,即=, 解得,x=15﹣, 答:立柱CD的高为(15﹣)米. 22. 20 【解答】解:(1)反比例函数y=( m≠0)的图象经过点(1,4), ∴,解得m=4,故反比例函数的表达式为, 一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n), ∴,解得, ∴一次函数的表达式y=﹣x﹣5; (2)由,解得或, ∴点P(﹣1,﹣4), 在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0), S△OPQ=S△OPA﹣S△OAQ==7.5. 23. 【解答】解:(1)证明:∵CE⊥AD于点E ∴∠DEC=90°, ∵BC=CD, ∴C是BD的中点,又∵O是AB的中点, ∴OC是△BDA的中位线, ∴OC∥AD ∴∠OCE=∠CED=90° ∴OC⊥CE,又∵点C在圆上, ∴CE是圆O的切线. (2)连接AC ∵AB是直径,点F在圆上 ∴∠AFB=∠PFE=90°=∠CEA ∵∠EPF=∠EPA ∴△PEF∽△PEA 20 ∴PE2=PF×PA ∵∠FBC=∠PCF=∠CAF 又∵∠CPF=∠CPA ∴△PCF∽△PAC ∴PC2=PF×PA ∴PE=PC 在直角△PEF中,sin∠PEF==. 24. 【解答】解:(1)∵抛物线的顶点坐标为(2,0), 设抛物线的解析式为y=a(x﹣2)2. ∵该抛物线经过点(4,1), ∴1=4a,解得:a=, ∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1. (2)联立直线AB与抛物线解析式成方程组,得: ,解得:,, ∴点A的坐标为(1,),点B的坐标为(4,1). 作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示). ∵点B(4,1),直线l为y=﹣1, ∴点B′的坐标为(4,﹣3). 20 设直线AB′的解析式为y=kx+b(k≠0), 将A(1,)、B′(4,﹣3)代入y=kx+b,得: ,解得:, ∴直线AB′的解析式为y=﹣x+, 当y=﹣1时,有﹣x+=﹣1, 解得:x=, ∴点P的坐标为(,﹣1). (3)∵点M到直线l的距离与点M到点F的距离总是相等, ∴(m﹣x0)2+(n﹣y0)2=(n+1)2, ∴m2﹣2x0m+x02﹣2y0n+y02=2n+1. ∵M(m,n)为抛物线上一动点, ∴n=m2﹣m+1, ∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1, 整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0. ∵m为任意值, ∴, ∴, ∴定点F的坐标为(2,1). 20 20查看更多