2019浙江省金华、义乌、丽水市中考数学试题(解析版,含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019浙江省金华、义乌、丽水市中考数学试题(解析版,含答案)

浙江省金华市2019年中考数学试卷 一、选择题(本题有10小题,每小题3分,共30分)‎ ‎1.初数4的相反数是(   ) ‎ A.                                         B. -4                                        C.                                         D. 4‎ ‎2.计算a6÷a3,正确的结果是(   ) ‎ A. 2                                          B. 3a                                          C. a2                                          D. a3‎ ‎3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是(   ) ‎ A. 1                                           B. 2                                           C. 3                                           D. 8‎ ‎4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是(   ) ‎ 星期 一 二 三 四 最高气温 ‎10℃‎ ‎12℃‎ ‎11℃‎ ‎9℃‎ 最低气温 ‎3℃‎ ‎0℃‎ ‎-2℃‎ ‎-3℃‎ A. 星期一                                B. 星期二                                C. 星期三                                D. 星期四 ‎5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为(    ) ‎ A.                                        B.                                        C.                                        D. ‎ ‎6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是(    ) ‎ ‎ ‎ A. 在南偏东75°方向处         B. 在5km处         C. 在南偏东15°方向5km处         D. 在南75°方向5km处 ‎7.用配方法解方程x2-6x-8=0时,配方结果正确的是(    ) ‎ A. (x-3)2=17                        B. (x-3)2=14                        C. (x-6)2=44                        D. (x-3)2=1‎ ‎8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是(   ) ‎ ‎ ‎ A. ∠BDC=∠α                    B. BC=m·tanα                    C. AO=                     D. BD= ‎ ‎9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为(    ) ‎ ‎ ‎ A. 2                                         B.                                          C.                                          D. ‎ ‎10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则 的值是(    ) ‎ ‎ ‎ A.                                  B. -1                                 C.                                  D. ‎ 二、填空题(本题有6小题,每小题4分,共24分)‎ ‎11.不等式3x-6≤9的解是________. ‎ ‎12.数据3,4,10,7,6的中位数是________. ‎ ‎13.当x=1,y= 时,代数式x2+2xy+y2的值是________. ‎ ‎14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。量角器的O刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________ . ‎ ‎ ‎ ‎15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ . ‎ ‎ ‎ ‎16.图2、图3是某公共汽车双开门的俯视示意图,ME,EF,FN是门轴的滑动轨道,∠E=∠F=90°,两门AB,CD的门轴A,B,C,D都在滑动轨道上.两门关闭时(图2),A,D分别在E,F处,门缝忽略不计(即B,C重合);两门同时开启,A,D分别沿E→M,F→N的方向匀速滑动,带动B,C滑动;B到达E时,C恰好到达F,此时两门完全开启。已知AB=50cm,CD=40cm. ‎ ‎ ‎ ‎(1)如图3,当∠ABE=30°时,BC=________ cm. ‎ ‎(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为________cm2 . ‎ 三、解答题(本题有8小题,共66分)‎ ‎17.计算:|-3|-2tan60°+ +( )-1 ‎ ‎18.解方程组: ‎ ‎19.某校根据课程设置要求,开设了数学类拓展性课程。为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(生人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题。 ‎ ‎ ‎ ‎(1)求m,n的值。 ‎ ‎(2)补全条形统计图。 ‎ ‎(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数。 ‎ ‎20.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。 ‎ ‎ ‎ ‎21.如图,在 OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D. ‎ ‎ ‎ ‎(1)求 的度数。 ‎ ‎(2)如图,点E在⊙O上,连结CE与⊙O交于点F。若EF=AB,求∠OCE的度数. ‎ ‎22.如图,在平面直角坐标系中,正次边形ABCDEF的对称中心P在反比例函数y= (k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2. ‎ ‎ ‎ ‎(1)点A是否在该反比例函数的图象上?请说明理曲。 ‎ ‎(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标。 ‎ ‎(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程。 ‎ ‎23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。 ‎ ‎ ‎ ‎(1)当m=0时,求该抛物线下方(包括边界)的好点个数。 ‎ ‎(2)当m=3时,求该抛物线上的好点坐标。 [来源:Z§xx§k.Com]‎ ‎(3)若点P在正方形OABC内部,该抛物线下方(包括边界)给好存在8个好点,求m的取值范围, ‎ ‎24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14 。点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF。 ‎ ‎ ‎ ‎(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO. ‎ ‎(2)已知点G为AF的中点。 ‎ ‎①如图2,若AD=BD,CE=2,求DG的长。‎ ‎②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由。‎ 答案解析部分 一、选择题(本题有10小题,每小题3分,共30分) ‎ ‎1.【答案】 B ‎ ‎【考点】相反数及有理数的相反数 ‎ ‎【解析】【解答】∵4的相反数是-4. ‎ 故答案为:B.‎ ‎【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.‎ ‎2.【答案】 D ‎ ‎【考点】同底数幂的除法 ‎ ‎【解析】【解答】解:a6÷a3=a6-3=a3 ‎ 故答案为:D.‎ ‎【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.‎ ‎3.【答案】 C ‎ ‎【考点】三角形三边关系 ‎ ‎【解析】【解答】解:∵三角形三边长分别为:a,3,5, ‎ ‎∴a的取值范围为:2<a<8,‎ ‎∴a的所有可能取值为:3,4,5,6,7.‎ 故答案为:C.‎ ‎【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.‎ ‎4.【答案】 C ‎ ‎【考点】极差、标准差 ‎ ‎【解析】【解答】解:依题可得: ‎ 星期一:10-3=7(℃),‎ 星期二:12-0=12(℃),‎ 星期三:11-(-2)=13(℃),‎ 星期四:9-(-3)=12(℃),‎ ‎∵7<12<13,‎ ‎∴这四天中温差最大的是星期三.‎ 故答案为:C.‎ ‎【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.‎ ‎5.【答案】 A ‎ ‎【考点】等可能事件的概率 ‎ ‎【解析】【解答】解:依题可得: ‎ 布袋中一共有球:2+3+5=10(个),‎ ‎∴搅匀后任意摸出一个球,是白球的概率P= .‎ 故答案为:A.‎ ‎【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.‎ ‎6.【答案】 D ‎ ‎【考点】钟面角、方位角 ‎ ‎【解析】【解答】解:依题可得: ‎ ‎90°÷6=15°,‎ ‎∴15°×5=75°,‎ ‎∴目标A的位置为:南偏东75°方向5km处.‎ 故答案为:D.‎ ‎【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.‎ ‎7.【答案】 A ‎ ‎【考点】配方法解一元二次方程 ‎ ‎【解析】【解答】解:∵x2-6x-8=0, ‎ ‎∴x2-6x+9=8+9,‎ ‎∴(x-3)2=17.‎ 故答案为:A.‎ ‎【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.‎ ‎8.【答案】 C ‎ ‎【考点】锐角三角函数的定义 ‎ ‎【解析】【解答】解:A.∵矩形ABCD, ‎ ‎∴AB=DC,∠ABC=∠DCB=90°,‎ 又∵BC=CB,‎ ‎∴△ABC≌△DCB(SAS),‎ ‎∴∠BDC=∠BAC=α,‎ 故正确,A不符合题意;‎ B.∵矩形ABCD,‎ ‎∴∠ABC=90°,‎ 在Rt△ABC中,‎ ‎∵∠BAC=α,AB=m,‎ ‎∴tanα= ,‎ ‎∴BC=AB·tanα=mtanα,‎ 故正确,B不符合题意;‎ C.∵矩形ABCD,‎ ‎∴∠ABC=90°,‎ 在Rt△ABC中,‎ ‎∵∠BAC=α,AB=m,‎ ‎∴cosα= ,‎ ‎∴AC= = ,‎ ‎∴AO= AC= ‎ 故错误,C符合题意;‎ D.∵矩形ABCD,‎ ‎∴AC=BD,‎ 由C知AC= = ,‎ ‎∴BD=AC= ,‎ 故正确,D不符合题意;‎ 故答案为:C.‎ ‎【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得 ‎∠BDC=∠BAC=α,故A正确;‎ B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,‎ 故正确;‎ C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC即可求得AO长,故错误;‎ D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;‎ ‎9.【答案】 D ‎ ‎【考点】圆锥的计算 ‎ ‎【解析】【解答】解:设BD=2r, ‎ ‎∵∠A=90°,‎ ‎∴AB=AD= r,∠ABD=45°,‎ ‎∵上面圆锥的侧面积S= ·2πr· r=1,‎ ‎∴r2= ,‎ 又∵∠ABC=105°,‎ ‎∴∠CBD=60°,‎ 又∵CB=CD,‎ ‎∴△CBD是边长为2r的等边三角形,‎ ‎∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .‎ 故答案为:D. 【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得 ·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.‎ ‎10.【答案】 A ‎ ‎【考点】剪纸问题 ‎ ‎【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图, ‎ 依题可得:‎ NM= a,FM=GN= ,‎ ‎∴NO= = ,‎ ‎∴GO= = ,‎ ‎∵正方形EFGH与五边形MCNGF的面积相等,‎ ‎∴x2= + a2 , ‎ ‎∴a= x,‎ ‎∴ = = .‎ 故答案为:A.‎ ‎【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ‎ ‎,由题意建立方程x2= + a2 , 解之可得a= x,由 ,将a= x代入即可得出答案.‎ 二、填空题(本题有6小题,每小题4分,共24分) ‎ ‎11.【答案】 x≤5 ‎ ‎【考点】解一元一次不等式 ‎ ‎【解析】【解答】解:∵3x-6≤9, ‎ ‎∴x≤5.‎ 故答案为:x≤5.‎ ‎【分析】根据解一元一次不等式步骤解之即可得出答案.‎ ‎12.【答案】 6 ‎ ‎【考点】中位数 ‎ ‎【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10, ‎ ‎∴这组数据的中位数为:6.‎ 故答案为:6.‎ ‎【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.‎ ‎13.【答案】 ‎ ‎【考点】代数式求值 ‎ ‎【解析】【解答】解:∵x=1,y=- , ‎ ‎∴x2+2xy+y2=(x+y)2=(1- )2= .‎ 故答案为: .‎ ‎【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.‎ ‎14.【答案】 40° ‎ ‎【考点】三角形内角和定理 ‎ ‎【解析】【解答】如图, ‎ 依题可得:∠AOC=50°,‎ ‎∴∠OAC=40°,‎ 即观察楼顶的仰角度数为40°.‎ 故答案为:40°.‎ ‎【分析】根据题意可得∠AOC=50°,由三角形内角和定理得∠OAC=40°,∠OAC即为观察楼顶的仰角度数.‎ ‎15.【答案】 (32,4800) ‎ ‎【考点】一次函数与一元一次方程的综合应用 ‎ ‎【解析】【解答】解:设良马追及x日,依题可得: ‎ ‎150×12+150x=240x,‎ 解得:x=20,‎ ‎∴240×20=4800,‎ ‎∴P点横坐标为:20+12=32,‎ ‎∴P(32,4800),‎ 故答案为:(32,4800).‎ ‎【分析】设良马追及x日,根据两种马所走的路程相同列出方程150×12+150x=240x,解之得x=20,从而可得路程为4800,根据题意得P点横坐标为:20+12=32,从而可得P点坐标.‎ ‎16.【答案】 (1)90-45 (2)2256 ‎ ‎【考点】解直角三角形的应用 ‎ ‎【解析】【解答】解:(1)∵AB=50cm,CD=40cm, ‎ ‎∴EF=AD=AB+CD=50+40=90(cm),‎ ‎∵∠ABE=30°,‎ ‎∴cos30°= ,‎ ‎∴BE=25 ,‎ 同理可得:CF=20 ,‎ ‎∴BC=EF-BE-CF=90-25 -20 =90-45 (cm);‎ ‎( 2 )作AG⊥FN,连结AD,如图,‎ 依题可得:AE=25+15=40(cm),‎ ‎∵AB=50,‎ ‎∴BE=30,‎ 又∵CD=40,‎ ‎∴sin∠ABE= ,cos∠ABE= ,‎ ‎∴DF=32,CF=24,‎ ‎∴S四边形ABCD=S矩形AEFG-S△AEB-S△CFD-S△ADG , ‎ ‎=40×90- ×30×40- ×24×32- ×8×90,‎ ‎=3600-600-384-360,‎ ‎=2256.‎ 故答案为:90-45 ,2256.‎ ‎【分析】(1)根据题意求得EF=AD=90cm,根据锐角三角函数余弦定义求得BE=25 ,‎ 同理可得:CF=20 ,由BC=EF-BE-CF即可求得答案.(2)作AG⊥FN,连结AD,根据题意可得AE=25+15=40cm,由勾股定理得BE=30,由锐角三角函数正弦、余弦定义可求得DF=32,CF=24,由S四边形ABCD=S矩形AEFG-S△AEB-S△CFD-S△ADG , 代入数据即可求得答案.‎ 三、解答题(本题有8小题,共66分) ‎ ‎17.【答案】 解:原式=3-2 +2 +3, ‎ ‎=6.‎ ‎【考点】实数的运算,负整数指数幂的运算性质,特殊角的三角函数值,实数的绝对值 ‎ ‎【解析】【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.‎ ‎18.【答案】 解:原方程可变形为: ,‎ ‎①+②得:6y=6,‎ 解得:y=1,‎ 将y=1代入②得:‎ x=3,‎ ‎∴原方程组的解为: .‎ ‎【考点】解二元一次方程组 ‎ ‎【解析】【分析】先将原方程组化简,再利用加减消元法解方程组即可得出答案.‎ ‎19.【答案】 (1)解:由统计表和扇形统计图可知: ‎ A 趣味数学的人数为12人,所占百分比为20%,‎ ‎∴总人数为:12÷20%=60(人),‎ ‎∴m=15÷60=25%,[来源:学.科.网Z.X.X.K]‎ n=9÷60=15%,‎ 答:m为25%,n为15%.‎ ‎ (2)由扇形统计图可得, ‎ D生活应用所占百分比为:30%,‎ ‎∴D生活应用的人数为:60×30%=18,‎ 补全条形统计图如下,‎ ‎ (3)解:由(1)知“数学史话”的百分比为25%, ‎ ‎∴该校最喜欢“数学史话”的人数为:1200×25%=300(人).‎ 答:该校最喜欢“数学史话”的人数为300人.‎ ‎【考点】用样本估计总体,扇形统计图,条形统计图 ‎ ‎【解析】【分析】(1)根据统计表和扇形统计图中的数据,由总数=频数÷频率,频率=频数÷总数即可得答案.(2)由扇形统计图中可得D生活应用所占百分比,再由频数=总数×频率即可求得答案.(3)由(1)知“数学史话”的百分比为25%,根据频数=总数×频率即可求得答案.‎ ‎20.【答案】 解:如图所示, ‎ ‎【考点】作图—复杂作图 ‎ ‎【解析】【分析】找出BC中点再与格点E、F连线即可得出EF平分BC的图形;由格点作AC的垂线即为EF;找出AB中点,再由格点、AB中点作AB的垂线即可.‎ ‎21.【答案】 (1)如图,连结OB,设⊙O半径为r, ‎ ‎∵BC与⊙O相切于点B,‎ ‎∴OB⊥BC,‎ 又∵四边形OABC为平行四边形,‎ ‎∴OA∥BC,AB=OC,[来源:学科网ZXXK]‎ ‎∴∠AOB=90°,‎ 又∵OA=OB=r,‎ ‎∴AB= r,‎ ‎∴△AOB,△OBC均为等腰直角三角形,‎ ‎∴∠BOC=45°,‎ ‎∴弧CD度数为45°.‎ ‎ (2)作OH⊥EF,连结OE, ‎ 由(1)知EF=AB= r,‎ ‎∴△OEF为等腰直角三角形,‎ ‎∴OH= EF= r,‎ 在Rt△OHC中,‎ ‎∴sin∠OCE= = ,‎ ‎∴∠OCE=30°.‎ ‎【考点】切线的性质,解直角三角形的应用 ‎ ‎【解析】【分析】(1)连结OB,设⊙O半径为r,根据切线性质得OB⊥BC,由平行四边形性质得OA∥BC,AB=OC,根据平行线性质得∠AOB=90°,由勾股定理得AB= r,从而可得△AOB,△OBC均为等腰直角三角形,由等腰直角三角形性质得∠BOC=45°,即弧CD度数.(2)作OH⊥EF,连结OE,由(1)知EF=AB= ‎ r,从而可得△OEF为等腰直角三角形,根据等腰直角三角形性质得OH= EF= r,在Rt△OHC中,根据正弦函数定义得sin∠OCE= ,从而可得∠OCE=30°.‎ ‎22.【答案】 (1)连结PC,过 点P作PH⊥x轴于点H,如图, ‎ ‎∵在正六边形ABCDEF中,点B在y轴上,‎ ‎∴△OBC和△PCH都是含有30°角的直角三角形,BC=PC=CD=2,‎ ‎∴OC=CH=1,PH= ,‎ ‎∴P(2, ),‎ 又∵点P在反比例函数y= 上,‎ ‎∴k=2 ,‎ ‎∴反比例函数解析式为:y= (x>0),‎ 连结AC,过点B作BG⊥AC于点G,‎ ‎∵∠ABC=120°,AB=CB=2,‎ ‎∴BG=1,AG=CG= ,AC=2 ,‎ ‎∴A(1,2 ),‎ ‎∴点A在该反比例函数的图像上.‎ ‎ (2)过点Q作QM⊥x轴于点M, ‎ ‎∵六边形ABCDEF为正六边形,‎ ‎∴∠EDM=60°,‎ 设DM=b,则QM= b,‎ ‎∴Q(b+3, b),‎ 又∵点Q在反比例函数上,‎ ‎∴ b(b+3)=2 ,‎ 解得:b1= ,b2= (舍去),‎ ‎∴b+3= +3= ,‎ ‎∴点Q的横坐标为 .‎ ‎ (3)连结AP, ‎ ‎∵AP=BC=EF,AP∥BC∥EF,‎ ‎∴平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移 个单位,或将正六边形ABCDEF向左平移2个单位.‎ ‎【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征 ‎ ‎【解析】【分析】(1)连结PC,过 点P作PH⊥x轴于点H,由正六边形性质可得△OBC和△PCH都是含有30°角的直角三角形,BC=PC=CD=2,根据直角三角形性质可得OC=CH=1,PH= ,即P(2, ),将点P坐标代入反比例函数解析式即可求得k值;连结AC,过点B作BG⊥AC于点G,由正六边形性质得∠ABC=120°,AB=CB=2,根据直角三角形性质可得BG=1,AG=CG= ,AC=2 ,即A(1,2 ),从而可得点A在该反比例函数的图像上.(2)过点Q作QM⊥x轴于点M,由正六边形性质可得∠EDM=60°,设DM=b,则QM= b,从而可得Q(b+3, b),将点Q坐标代入反比例函数解析式可得 b(b+3)=2 ,解之得b值,从而可得点Q的横坐标b+3的值.(3)连结AP,可得AP=BC=EF,AP∥BC∥EF,从而可得平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移 个单位,或将正六边形ABCDEF向左平移2个单位.‎ ‎23.【答案】 (1)解:∵m=0, ‎ ‎∴二次函数表达式为:y=-x2+2,画出函数图像如图1,‎ ‎∵当x=0时,y=2;当x=1时,y=1;‎ ‎∴抛物线经过点(0,2)和(1,1),‎ ‎∴好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个.‎ ‎ (2)解:∵m=3, ‎ ‎∴二次函数表达式为:y=-(x-3)2+5,画出函数图像如图2,‎ ‎∵当x=1时,y=1;当x=2时,y=4;当x=4时,y=4;‎ ‎∴抛物线上存在好点,坐标分别是(1,1),(2,4)和(4,4)。‎ ‎ (3)解:∵抛物线顶点P(m,m+2), ‎ ‎∴点P在直线y=x+2上,‎ ‎∵点P在正方形内部,‎ ‎∴0<m<2,‎ 如图3,E(2,1),F(2,2),‎ ‎∴当顶点P在正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外),‎ 当抛物线经过点E(2,1)时,‎ ‎∴-(2-m)2+m+2=1,‎ 解得:m1= ,m2= (舍去),‎ 当抛物线经过点F(2,2)时,‎ ‎∴-(2-m)2+m+2=2,‎ 解得:m3=1,m4=4(舍去),‎ ‎∴当 ≤m<1时,顶点P在正方形OABC内,恰好存在8个好点.‎ ‎【考点】二次函数的其他应用 ‎ ‎【解析】【分析】(1)将m=0代入二次函数解析式得y=-x2+2,画出函数图像,从图像上可得抛物线经过点(0,2)和(1,1),从而可得好点个数. (2)将m=3代入二次函数解析式得y=-(x-3)2+5,画出函数图像,由图像可得抛物线上存在好点以及好点坐标. (3)由解析式可得抛物线顶点P(m,m+2),从而可得点P在直线y=x+2上,由点P在正方形内部,可得0<m<2;结合题意分情况讨论:①当抛物线经过点E(2,1)时,②当抛物线经过点F(2,2)时,将点代入二次函数解析式 ,解之即可得m值,从而可得m范围.‎ ‎24.【答案】 (1)解:由旋转的性质得: ‎ CD=CF,∠DCF=90°,‎ ‎∵△ABC是等腰直角三角形,AD=BD,‎ ‎∴∠ADO=90°,CD=BD=AD,‎ ‎∴∠DCF=∠ADC,‎ 在△ADO和△FCO中,‎ ‎∵ ,‎ ‎∴△ADO≌△FCO(AAS),‎ ‎∴DO=CO,‎ ‎∴BD=CD=2DO.‎ ‎ (2)解:①如图1,分别过点D、F作DN⊥BC于点N,FM⊥BC于点M,连结BF, ‎ ‎∴∠DNE=∠EMF=90°,‎ 又∵∠NDE=∠MEF,DE=EF,‎ ‎∴△DNE≌△EMF,‎ ‎∴DN=EM,‎ 又∵BD=7 ,∠ABC=45°,‎ ‎∴DN=EM=7,‎ ‎∴BM=BC-ME-EC=5,‎ ‎∴MF=NE=NC-EC=5,‎ ‎∴BF=5 ,‎ ‎∵点D、G分别是AB、AF的中点,‎ ‎∴DG= BF= ;‎ ‎②过点D作DH⊥BC于点H,‎ ‎∵AD=6BD,AB=14 ,‎ ‎∴BD=2 ,‎ ‎(ⅰ)当∠DEG=90°时,有如图2、3两种情况,设CE=t,‎ ‎∵∠DEF=90°,∠DEG=90°,‎ ‎∴点E在线段AF上,‎ ‎∴BH=DH=2,BE=14-t,HE=BE-BH=12-t,‎ ‎∵△DHE∽△ECA,‎ ‎∴ ,‎ 即 ,‎ 解得:t=6±2 ,‎ ‎∴CE=6+2 ,或CE=6-2 ,‎ ‎(ⅱ)当DG∥BC时,如图4,过点F作FK⊥BC于点K,延长DG交AC于点N,延长AC并截取MN=NA,连结FM,‎ 则NC=DH=2,MC=10,‎ 设GN=t,则FM=2t,BK=14-2t,‎ ‎∵△DHE∽△EKF,‎ ‎∴DH=EK=2,HE=KF=14-2t,‎ ‎∵MC=FK,‎ ‎∴14-2t=10,‎ 解得:t=2,‎ ‎∵GN=EC=2,GN∥EC,‎ ‎∴四边形GECN为平行四边形,∠ACB=90°,‎ ‎∴四边形GECN为矩形,[来源:Zxxk.Com]‎ ‎∴∠EGN=90°,‎ ‎∴当EC=2时,有∠DGE=90°,‎ ‎(ⅲ)当∠EDG=90°时,如图5:‎ 过点G、F分别作AC的垂线交射线于点N、M,过点E作EK⊥FM于点K,过点D作GN的垂线交NG的延长线于点P,则PN=HC=BC-HB=12,‎ 设GN=t,则FM=2t,‎ ‎∴PG=PN-GN=12-t,‎ ‎∵△DHE∽△EKF,‎ ‎∴FK=2,‎ ‎∴CE=KM=2t-2,‎ ‎∴HE=HC-CE=12-(2t-2)=14-2t,‎ ‎∴EK=HE=14-2t,‎ AM=AC+CM=AC+EK=14+14-2t=28-2t,‎ ‎∴MN= AM=14-t,NC=MN-CM=t,‎ ‎∴PD=t-2,‎ ‎∵△GPD∽△DHE,‎ ‎∴ ,‎ 即 ,‎ 解得:t1=10- ,t2=10+ (舍去),[来源:Z#xx#k.Com]‎ ‎∴CE=2t-2=18-2 ;‎ 综上所述:CE的长为=6+2 ,6-2 ,2或18-2 .‎ ‎【考点】相似三角形的判定与性质,旋转的性质 ‎ ‎【解析】【分析】(1)由旋转的性质得CD=CF,∠DCF=90°,由全等三角形判定AAS得△ADO≌△FCO,根据全等三角形性质即可得证. ‎ ‎(2)①分别过点D、F作DN⊥BC于点N,FM⊥BC于点M,连结BF,由全等三角形判定和性质得DN=EM,根据勾股定理求得DN=EM=7,BF=5 ,由线段中点定义即可求得答案.‎ ‎②过点D作DH⊥BC于点H,根据题意求得BD=2 ,再分情况讨论: (ⅰ)当∠DEG=90°时,画出图形; (ⅱ)当DG∥BC时,画出图形; (ⅲ)当∠EDG=90°时,画出图形;结合图形分别求得CE长.‎
查看更多

相关文章

您可能关注的文档