- 2021-11-10 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2010中考数学兰州考试试题
2010年兰州中考试卷 兰州市2010年初中毕业生学业考试试卷 数 学(A) 注意事项: 1.全卷共150分,考试时间120分钟。 2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的相应位置上。 3.考生务必将答案直接填(涂)写在答题卡的相应位置上。 一、选择题 (本题15小题,每小题4分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有 A.1个 B.2个 C.3个 D.4个 2. 函数y =+中自变量x的取值范围是 A.x≤2 B.x=3 C.x<2且x ≠3 D.x ≤2且x≠3 3. 已知一个几何体的三种视图如右图所示,则这个 几何体是 A.圆柱 B.圆锥 C.球体 D.正方体 4. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A.4个 B.3个 C. 2个 D. 1个 5. 二次函数的图像的顶点坐标是 A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4) 6. 已知两圆的半径R、r分别为方程的两根,两圆的圆心距为1,两圆的位置关系是 A.外离 B.内切 C.相交 D.外切 7. 将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为 A.15 B.28 C.29 D.34 第7题图 第8题图 8. 某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图. 则这组数据的众数和中位数分别是 A.7、7 B. 8、7.5 C.7、7.5 D. 8、6 9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 A. B. C. D. 10. 如图,正三角形的内切圆半径为1,那么这个正三角形的边长为 A. B. C. D. 第10题图 第11题图 11. 如图所示,菱形ABCD的周长为20,DE⊥AB,垂足为E,A=,则下列结论正确的个数有 ① ② ③菱形的面积为 ④ A. 1个 B. 2个 C. 3个 D. 4个 12. 上海世博会的某纪念品原价168元,连续两次降价%后售价为128元. 下列所列方程中正确的是 A. B. C. D. 13. 抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 14. 已知点(-1,),(2,),(3,)在反比例函数的图像上. 下列结论中正确的是 A. B. C. D. 15. 抛物线图像如图所示,则一次函数与反比例函数 在同一坐标系内的图像大致为 x x x x x 第15题图 二、填空题(本题5小题,每小题4分,共20分) 16. 已知关于x的一元二次方程有实数根,则m的取值范围是 . 17. 如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为 . 18. 如图,扇形OAB,∠AOB=90,⊙P 与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是 . 第17题图 第18题图 19. 如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米. 20. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. 第19题图 第20题图 三、解答题(本题8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.) 21.(本题满分10分) (1)(本小题满分4分)—+ (2)(本小题满分6分) 已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=-时,y的值. 22.(本题满分6分)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上. (1)(本小题满分4分)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹). (2)(本小题满分2分))若△ABC中AB=8米,AC=6米,∠BAC=,试求小明家圆形花坛的面积. 第 22题图 23.(本题满分6分)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去. (1)请用数状图或列表的方法求小莉去上海看世博会的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. 24.(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米. (1)求新传送带AC的长度; (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45) 第24题图 25.(本题满分9分)如图,P1是反比例函数在第一象限图像上的一点,点A1 的坐标为(2,0). (1)当点P1的横坐标逐渐增大时,△P1O A1的面积 将如何变化? (2)若△P1O A1与△P2 A1 A2均为等边三角形,求 此反比例函数的解析式及A2点的坐标. 第25题图 26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值. 第26题图 27.(本题满分10分)已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10, BD=8. (1)若AC⊥BD,试求四边形ABCD的面积 ; (2)若AC与BD的夹角∠AOD=,求四边形ABCD的面积; (3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD= AC=,BD=,试求四边形ABCD的面积(用含,,的代数式表示). 第 27题图 28.(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0) (1)当x取何值时,该抛物线的最大值是多少? (2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ① 当时,判断点P是否在直线ME上,并说明理由; ② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由. 图1 第28题图 图2 兰州市2010年初中毕业生学业考试试卷 数学(A)参考答案及评分标准 一、 选择题(本题15小题,每小题4分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 B A B B A B B C C D C B B B D 二、填空题(本题5小题,每小题4分,共20分) 16.且m≠1 17.5 18. 19.6 20. 三、解答题(本题8小题,共70分。解答时写出必要的文字说明、证明过程或演算步骤。) 21.(本题满分10分) (1)(本小题满分4分) 解:原式= ……………………………………………2分 = ………………………………………………………3分 =5 …………………………………………………………………………4分 (2)(本小题满分6分) 解:解:y1与x2成正比例,y2与x成反比例 设y1=k1x2,y2=,y=k1x2+…………………………………………………2分 把x=1,y=3,x=-1,y=1分别代入上式得 ……………………3分 ∴ …………………………………………5分 当x=-, y=2×(-)2+=-2=- ………………………………6分 22. (本题满分6分) (1)(本小题满分4分) 用尺规作出两边的垂直平分线 …………………2 分 作出圆 …………………………3分 ⊙O即为所求做的花园的位置.(图略) ……………………………4分 (2)(本小题满分2分) 解:∵∠BAC=,AB=8米,AC=6米, ∴BC=10米 ∴ △ABC外接圆的半径为5米 ……………………………………5分 ∴小明家圆形花坛的面积为2平方米 . …………………………… 6分 23.(本题满分6分) (1)所有可能的结果如有表: 一共有16种结果,每种结果出现的 可能性相同. …………………………………2分 和为偶数的概率为 所以小莉去上海看世博会的概率为 ………………………………3分 (2)由(1)列表的结果可知:小莉去的概率为,哥哥去的概率为,所以游戏 不公平,对哥哥有利. …………………………………………4分 游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥得3分,则游戏是 公平的. ……………………………………………………6分 (游戏规则的修改有多种多样,阅卷老师视情况给分) 24.(本题满分8分) (1)如图,作AD⊥BC于点D ……………………………………1分 Rt△ABD中, AD=ABsin45°=4……2分 在Rt△ACD中,∵∠ACD=30° ∴AC=2AD=≈………………………3分 即新传送带AC的长度约为米. ………………………………………4分 (2)结论:货物MNQP应挪走. ……………………………………5分 解:在Rt△ABD中,BD=ABcos45°=4 ……………………6分 在Rt△ACD中,CD=AC cos30°= ∴CB=CD—BD=≈2.1 ∵PC=PB—CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP应挪走. …………………………………………………………8分 25. (本题满分9分) (1)解:(1)△P1OA1的面积将逐渐减小. …………………………………2分 (2)作P1C⊥OA1,垂足为C,因为△P1O A1为等边三角形, 所以OC=1,P1C=,所以P1. ……………………………………3分 代入,得k=,所以反比例函数的解析式为. ……………4分 作P2D⊥A1 A2,垂足为D、设A1D=a,则OD=2+a,P2D=a, 所以P2. ……………………………………………………………6分 代入,得,化简得 解的:a=-1± ……………………………………………7分 ∵a>0 ∴ ………………………………8分 所以点A2的坐标为﹙,0﹚ ………………………………………………9分 26. (本题满分10分) 解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ……………………………………………………1分 ∵AB是⊙O的直径 ∴∠ACO+∠OCB=90° …………………………………………………2分 ∴∠PCB+∠OCB=90°,即OC⊥CP …………………………………………3分 ∵OC是⊙O的半径 ∴PC是⊙O的切线 …………………………………………………4分 (2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB ∴∠CBO=∠COB ……………………………………………5分 ∴BC=OC ∴BC=AB ………………………………………………………6分 (3)连接MA,MB ∵点M是弧AB的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN∽△MCB ∴ ∴BM2=MC·MN ……………………8分 ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM ∵AB=4 ∴BM= ………………………………………………………9分 ∴MC·MN=BM2=8 ……………………………………………………10分 27. (本题满分10分) 解:(1)∵AC⊥BD ∴四边形ABCD的面积 ………………………………………2分 (2)过点A分别作AE⊥BD,垂足为E …………………………………3分 ∵四边形ABCD为平行四边形 在Rt⊿AOE中, ∴ …………4分 ∴ ………………………………5分 ∴四边形ABCD的面积 ……………………………………6分 (3)如图所示过点A,C分别作AE⊥BD,CF⊥BD,垂足分别为E,F …………7分 在Rt⊿AOE中, ∴ 同理可得 ………………………………8分 …………………………………10分 ∴四边形ABCD的面积 28. (本题满分11分) 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0) 故可得c=0,b=4 所以抛物线的解析式为…………………………………………1分 由 得当x=2时,该抛物线的最大值是4. …………………………………………2分 (2)① 点P不在直线ME上. 已知M点的坐标为(2,4),E点的坐标为(4,0), 设直线ME的关系式为y=kx+b. 于是得 ,解得 所以直线ME的关系式为y=-2x+8. …………………………………………3分 由已知条件易得,当时,OA=AP=,…………………4分 ∵ P点的坐标不满足直线ME的关系式y=-2x+8. [来源:Zxxk.Com] ∴ 当时,点P不在直线ME上. ……………………………………5分 ②以P、N、C、D为顶点的多边形面积可能为5 ∵ 点A在x轴的非负半轴上,且N在抛物线上, ∴ OA=AP=t. ∴ 点P,N的坐标分别为(t,t)、(t,-t 2+4t) …………………………………6分 ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t …………………………………………………………………………………7分 (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴ S=DC·AD=×3×2=3. (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵ PN∥CD,AD⊥CD, ∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3…………………8分 当-t 2+3 t+3=5时,解得t=1、2…………………………………………………9分 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5, 当t=1时,此时N点的坐标(1,3)………………………………………10分 当t=2时,此时N点的坐标(2,4)………………………………………11分 说明:(ⅱ)中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(ⅰ ),只有(ⅱ)也可以,不扣分)查看更多