- 2021-11-10 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级上册数学知识点总结 (1)
九年级上册数学知识点总结归纳 1 第二十一章 一元二次方程 第二十二章 二次函数 第二十三章 旋转 第二十四章 圆 第二十五章 概率初步 23 / 23 第二十一章 一元二次方程 知识点1:一元二次方程的概念 一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程. 一般形式:ax2+bx+c=0(a≠0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。 知识点2:一元二次方程的解法 1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。 X+a= =-a+ =-a- 2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解. 3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是(b2-4ac≥0)。步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。 4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。 5.一元二次方程的注意事项: ⑴ 在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解. ⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) =3(x+4)中,不能随便约去x+4。 23 / 23 ⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 6.一元二次方程解的情况 ⑴b2-4ac≥0方程有两个不相等的实数根; ⑵b2-4ac=0方程有两个相等的实数根; ⑶b2-4ac≤0方程没有实数根。 解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题。主要用于求方程中未知系数的值或取值范围。 知识点3:根与系数的关系:韦达定理 对于方程ax2+bx+c=0(a≠0)来说,x1 +x2 =—,x1●x2= 。 利用韦达定理可以求一些代数式的值(式子变形),如 。 解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。 知识点4:一元二次方程的应用 一、考点讲解: 1.构建一元二次方程数学模型,常见的模型如下: ⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等; ⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x)2=b,其中a表示增长(降低)前的数据,x表示增长率(降低率),b表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。 ⑶ 经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。 ⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。 2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 一元二次方程与实际问题 1、 病毒传播问题 23 / 23 1、 树干问题 2、 握手问题(单循环问题) 3、 贺卡问题(双循环问题) 4、 围栏问题 5、 几何图形(道路、做水箱) 6、 增长率、降价率问题 7、 利润问题(注意减少库存、让顾客受惠等字样) 8、 数字问题 10、折扣问题 第二十二章 二次函数 一、二次函数概念: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数. 2. 二次函数的结构特征: ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2. ⑵ 是常数,是二次项系数,是一次项系数,是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:的性质: a 的绝对值越大,抛物线的开口越小。 的符号 开口方向 顶点坐标 对称轴 性质 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 时,随的增大而 ;时,随的增大而 ;时,有最 23 / 23 值 . 2. 的性质: 上加下减。 的符号 开口方向 顶点坐标 对称轴 性质 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 3. 的性质: 左加右减。 的符号 开口方向 顶点坐标 对称轴 性质 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 4. 的性质: 的符号 开口方向 顶点坐标 对称轴 性质 时,随的增大而 ;时,随的增大而 ;时,有最 值 . 时,随的增大而 ;时,随的增大而 ;时,有最 23 / 23 值 . 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标 ; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左 右 ,上 下 ”. 方法二: ⑴沿轴平移:向上(下)平移个单位,变成 (或) ⑵沿轴平移:向左(右)平移个单位,变成(或) 四、二次函数与的比较 从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中. 五、二次函数图象的画法 五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点. 23 / 23 六、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为. 当时,随的增大而减小;当时,随的增大而增大;当时,有最小值. 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值. 七、二次函数解析式的表示方法 1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 两根式(两点式):(,,是抛物线与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数中,作为二次项系数,显然. ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大. 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小. 2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴. ⑴ 在的前提下, 当时,,即抛物线的对称轴在轴左侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的右侧. ⑵ 在的前提下,结论刚好与上述相反,即 当时,,即抛物线的对称轴在轴右侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的左侧. 23 / 23 总结起来,在确定的前提下,决定了抛物线对称轴的位置. 的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异” 总结: 3. 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 总之,只要都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定: 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 关于顶点对称后,得到的解析式是; 23 / 23 关于顶点对称后,得到的解析式是. 5. 关于点对称 关于点对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系(二次函数与轴交点情况): 一元二次方程是二次函数当函数值时的特殊情况. 图象与轴的交点个数: ① 当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离. ② 当时,图象与轴只有一个交点; ③ 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有. 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: ⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标. 抛物线与轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 抛物线与轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 23 / 23 抛物线与轴无交点 二次三项式的值恒为正 一元二次方程无实数根. ⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 图像参考: 23 / 23 十一、函数的应用 二次函数应用 二次函数考查重点与常见题型 1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以为自变量的二次函数的图像经过原点, 则的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是( ) y y y y 1 1 0 x o-1 x 0 x 0 -1 x A B C D 3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是- (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5.考查代数与几何的综合能力,常见的作为专项压轴题。 23 / 23 【例题经典】 由抛物线的位置确定系数的符号 例1 (1)二次函数的图像如图1,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个 (1) (2) 【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键. 例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1查看更多