- 2021-11-10 发布 |
- 37.5 KB |
- 21页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
天津市中考数学真题试题(解析版)
2018年天津市初中毕业生学业考试试卷 数学 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 计算的结果等于( ) A. 5 B. C. 9 D. 【答案】C 【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C. 点睛:本题考查了有理数的乘方,比较简单,注意负号. 2. 的值等于( ) A. B. C. 1 D. 【答案】B 【解析】分析:根据特殊角的三角函数值直接求解即可. 详解:cos30°=. 故选:B. 点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握. 3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( ) A. B. C. D. 【答案】B 【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 详解:将77800用科学记数法表示为:. 故选B. 点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4. 下列图形中,可以看作是中心对称图形的是( ) A. B. C. D. 【答案】A 【解析】分析:根据中心对称的定义,结合所给图形即可作出判断. 详解:A、是中心对称图形,故本选项正确; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、不是中心对称图形,故本选项错误; 故选:A. 点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是( ) A. B. C. D. 【答案】A 【解析】分析:画出从正面看到的图形即可得到它的主视图. 详解:这个几何体的主视图为: 故选:A. 点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图. 6. 估计的值在( ) A. 5和6之间 B. 6和7之间 C. 7和8之间 D. 8和9之间 【答案】D 【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案. 详解:∵64<<81, ∴8<<9, 故选:D. 点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题 7. 计算的结果为( ) A. 1 B. 3 C. D. 【答案】C 【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案. 详解:原式=. 故选:C. 点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 8. 方程组的解是( ) A. B. C. D. 【答案】A 【解析】分析:根据加减消元法,可得方程组的解. 详解:, ①-②得 x=6, 把x=6代入①,得 y=4, 原方程组的解为. 故选A. 点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键. 9. 若点,,在反比例函数的图像上,则,,的大小关系是( ) A. B. C. D. 【答案】B 【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答. 详解:∵反比例函数y=中,k=12>0, ∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小, ∵y1<y2<0<y3, ∴. 故选:B. 点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性. 10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是( ) A. B. C. D. 【答案】D 【解析】分析:由折叠的性质知,BC=BE.易得. 详解:由折叠的性质知,BC=BE. ∴.. 故选:D. 点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是( ) A. B. C. D. 【答案】D 【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD 的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解. 详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P. ∴PA+PE的最小值AE′; ∵E为AD的中点, ∴E′为CD的中点, ∵四边形ABCD是正方形, ∴AB=BC=CD=DA,∠ABF=∠AD E′=90°, ∴DE′=BF, ∴ΔABF≌ΔAD E′, ∴AE′=AF. 故选D. 点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可. 12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论: ①抛物线经过点; ②方程有两个不相等的实数根; ③. 其中,正确结论的个数为( ) A. 0 B. 1 C. 2 D. 3 【答案】C 【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解. 详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误; 抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确; ∵对称轴在轴右侧, ∴>0 ∵a<0 ∴b>0 ∵经过点, ∴a-b+c=0 ∵经过点, ∴c=3 ∴a-b=-3 ∴b=a+3,a=b-3 ∴-3查看更多
相关文章
- 当前文档收益归属上传用户