- 2021-11-10 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年甘肃省庆阳市中考数学试卷含答案
2019年甘肃省庆阳市中考数学试卷 一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.(3分)下列四个几何体中,是三棱柱的为( ) A. B. C. D. 2.(3分)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是( ) A.0 B.1 C.2 D.3 3.(3分)下列整数中,与10最接近的整数是( ) A.3 B.4 C.5 D.6 4.(3分)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ) A.7×10﹣7 B.0.7×10﹣8 C.7×10﹣8 D.7×10﹣9 5.(3分)如图,将图形用放大镜放大,应该属于( ) A.平移变换 B.相似变换 C.旋转变换 D.对称变换 6.(3分)如图,足球图片正中的黑色正五边形的内角和是( ) A.180° B.360° C.540° D.720° 7.(3分)不等式2x+9≥3(x+2)的解集是( ) A.x≤3 B.x≤﹣3 C.x≥3 D.x≥﹣3 8.(3分)下面的计算过程中,从哪一步开始出现错误( ) A.① B.② C.③ D.④ 9.(3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是( ) A.22.5° B.30° C.45° D.60° 10.(3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为( ) A.3 B.4 C.5 D.6 二、填空题:本大题共8小题,每小题4分,共32分. 11.(4分)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点 . 12.(4分)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据: 实验者 德•摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基 掷币次数 6140 4040 10000 36000 80640 出现“正面朝上”的次数 3109 2048 4979 18031 39699 频率 0.506 0.507 0.498 0.501 0.492 请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到0.1). 13.(4分)因式分解:xy2﹣4x= . 14.(4分)关于x的一元二次方程x2+mx+1=0有两个相等的实数根,则m的取值为 . 15.(4分)将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为 . 16.(4分)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 . 17.(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= . 18.(4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 . 三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤 19.(6分)计算:(﹣2)2﹣|2-2|﹣2cos45°+(3﹣π)0 20.(6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元? 21.(8分)已知:在△ABC中,AB=AC. (1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法) (2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O= . 22.(8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:3取1.73). 23.(10分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同. (1)李欣选择线路C.“园艺小清新之旅”的概率是多少? (2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率. 四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤. 24.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下: 收集数据: 七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77. 八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41. 整理数据: 40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 七年级 0 1 0 a 7 1 八年级 1 0 0 7 b 2 分析数据: 平均数 众数 中位数 七年级 78 75 c 八年级 78 d 80.5 应用数据: (1)由上表填空:a= ,b= ,c= ,d= . (2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人? (3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由. 25.(10分)如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点 (1)求反比例函数和一次函数的表达式; (2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围. 26.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E. (1)求证:AC是⊙D的切线; (2)若CE=23,求⊙D的半径. 27.(10分)阅读下面的例题及点拨,并解决问题: 例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°. 点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°. 问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1 是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°. 28.(12分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m. (1)求此抛物线的表达式; (2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由; (3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少? 2019年甘肃省庆阳市中考数学试卷 参考答案与试题解析 一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.(3分)下列四个几何体中,是三棱柱的为( ) A. B. C. D. 【解答】解:A、该几何体为四棱柱,不符合题意; B、该几何体为圆锥,不符合题意; C、该几何体为三棱柱,符合题意; D、该几何体为圆柱,不符合题意. 故选:C. 2.(3分)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是( ) A.0 B.1 C.2 D.3 【解答】解:∵数轴的单位长度为1,如果点A表示的数是﹣1, ∴点B表示的数是:3. 故选:D. 3.(3分)下列整数中,与10最接近的整数是( ) A.3 B.4 C.5 D.6 【解答】解:∵32=9,42=16, ∴3<10<4, 10与9的距离小于16与10的距离, ∴与10最接近的是3. 故选:A. 4.(3分)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ) A.7×10﹣7 B.0.7×10﹣8 C.7×10﹣8 D.7×10﹣9 【解答】解:0.000000007=7×10﹣9; 故选:D. 5.(3分)如图,将图形用放大镜放大,应该属于( ) A.平移变换 B.相似变换 C.旋转变换 D.对称变换 【解答】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换. 故选:B. 6.(3分)如图,足球图片正中的黑色正五边形的内角和是( ) A.180° B.360° C.540° D.720° 【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°, 故选:C. 7.(3分)不等式2x+9≥3(x+2)的解集是( ) A.x≤3 B.x≤﹣3 C.x≥3 D.x≥﹣3 【解答】解:去括号,得2x+9≥3x+6, 移项,合并得﹣x≥﹣3 系数化为1,得x≤3; 故选:A. 8.(3分)下面的计算过程中,从哪一步开始出现错误( ) A.① B.② C.③ D.④ 【解答】解:xx-y-yx+y =x(x+y)(x-y)(x+y)-y(x-y)(x-y)(x+y) =x2+xy-xy+y2(x-y)(x+y) =x2+y2x2-y2. 故从第②步开始出现错误. 故选:B. 9.(3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是( ) A.22.5° B.30° C.45° D.60° 【解答】解:设圆心为O,连接OA、OB,如图, ∵弦AB的长度等于圆半径的2倍, 即AB=2OA, ∴OA2+OB2=AB2, ∴△OAB为等腰直角三角形,∠AOB=90°, ∴∠ASB=12∠AOB=45°. 故选:C. 10.(3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为( ) A.3 B.4 C.5 D.6 【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3. ∴12AB•12BC=3,即AB•BC=12. 当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7, ∴AB+BC=7. 则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3, 因为AB<AD,即AB<BC, 所以AB=3,BC=4. 故选:B. 二、填空题:本大题共8小题,每小题4分,共32分. 11.(4分)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点 (﹣1,1) . 【解答】解:如图所示:可得原点位置,则“兵”位于(﹣1,1). 故答案为:(﹣1,1). 12.(4分)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据: 实验者 德•摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基 掷币次数 6140 4040 10000 36000 80640 出现“正面朝上”的次数 3109 2048 4979 18031 39699 频率 0.506 0.507 0.498 0.501 0.492 请根据以上数据,估计硬币出现“正面朝上”的概率为 0.5 (精确到0.1). 【解答】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动, 所以估计硬币出现“正面朝上”的概率为0.5. 故答案为0.5. 13.(4分)因式分解:xy2﹣4x= x(y+2)(y﹣2) . 【解答】解:xy2﹣4x, =x(y2﹣4), =x(y+2)(y﹣2). 14.(4分)关于x的一元二次方程x2+mx+1=0有两个相等的实数根,则m的取值为 4 . 【解答】解: 由题意,△=b2﹣4ac=(m)2﹣4=0 得m=4 故答案为4 15.(4分)将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为 y=(x﹣2)2+1 . 【解答】解:y=x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1, 所以,y=(x﹣2)2+1. 故答案为:y=(x﹣2)2+1. 16.(4分)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 4﹣π . 【解答】解:如图: 新的正方形的边长为1+1=2, ∴恒星的面积=2×2﹣π=4﹣π. 故答案为4﹣π. 17.(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= 85或14 . 【解答】解: ①当∠A为顶角时,等腰三角形两底角的度数为:180°-80°2=50° ∴特征值k=80°50°=85 ②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20° ∴特征值k=20°80°=14 综上所述,特征值k为58或14 故答案为85或14 18.(4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 13a+21b . 【解答】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b, 故答案为:13a+21b. 三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤 19.(6分)计算:(﹣2)2﹣|2-2|﹣2cos45°+(3﹣π)0 【解答】解:(﹣2)2﹣|2-2|﹣2cos45°+(3﹣π)0, =4﹣(2-2)﹣2×22+1, =4﹣2+2-2+1, =3. 20.(6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元? 【解答】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得: 12y+20x=11212x+20y=144, 解得:x=2y=6, 答:中性笔和笔记本的单价分别是2元、6元. 21.(8分)已知:在△ABC中,AB=AC. (1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法) (2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O= 25π . 【解答】解:(1)如图⊙O即为所求. (2)设线段BC的垂直平分线交BC于点E. 由题意OE=4,BE=EC=3, 在Rt△OBE中,OB=32+42=5, ∴S圆O=π•52=25π. 故答案为25π. 22.(8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:3取1.73). 【解答】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F. ∵∠CEH=∠CFH=∠FHE=90°, ∴四边形CEHF是矩形, ∴CE=FH, 在Rt△ACE中,∵AC=40cm,∠A=60°, ∴CE=AC•sin60°=34.6(cm), ∴FH=CE=34.6(cm) ∵DH=49.6cm, ∴DF=DH﹣FH=49.6﹣34.6=15(cm), 在Rt△CDF中,sin∠DCF=DFCD=1530=12, ∴∠DCF=30°, ∴此时台灯光线为最佳. 23.(10分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同. (1)李欣选择线路C.“园艺小清新之旅”的概率是多少? (2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率. 【解答】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14; (2)画树状图分析如下: 共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种, ∴李欣和张帆恰好选择同一线路游览的概率为416=14. 四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤. 24.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下: 收集数据: 七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77. 八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41. 整理数据: 40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 七年级 0 1 0 a 7 1 八年级 1 0 0 7 b 2 分析数据: 平均数 众数 中位数 七年级 78 75 c 八年级 78 d 80.5 应用数据: (1)由上表填空:a= 11 ,b= 10 ,c= 78 ,d= 81 . (2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人? (3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由. 【解答】解:(1)由题意知a=11,b=10, 将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94, ∴其中位数c=77+792=78, 八年级成绩的众数d=81, 故答案为:11,10,78,81; (2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×1+240=90(人); (3)八年级的总体水平较好, ∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多, ∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可). 25.(10分)如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b 的图象在第一象限交于A(1,3),B(3,1)两点 (1)求反比例函数和一次函数的表达式; (2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围. 【解答】解:(1)∵反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点, ∴3=k1,3=﹣1+b, ∴k=3,b=4, ∴反比例函数和一次函数的表达式分别为y=3x,y=﹣x+4; (2)由图象可得:当1<a<3时,PM>PN. 26.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E. (1)求证:AC是⊙D的切线; (2)若CE=23,求⊙D的半径. 【解答】(1)证明:连接AD, ∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°, ∵AD=BD, ∴∠BAD=∠B=30°, ∴∠ADC=60°, ∴∠DAC=180°﹣60°﹣30°=90°, ∴AC是⊙D的切线; (2)解:连接AE, ∵AD=DE,∠ADE=60°, ∴△ADE是等边三角形, ∴AE=DE,∠AED=60°, ∴∠EAC=∠AED﹣∠C=30°, ∴∠EAC=∠C, ∴AE=CE=23, ∴⊙D的半径AD=23. 27.(10分)阅读下面的例题及点拨,并解决问题: 例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°. 点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°. 问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°. 【解答】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示: 则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1, ∴△EB1C1是等腰直角三角形, ∴∠B1EC1=∠B1C1E=45°, ∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点, ∴∠M1C1N1=90°+45°=135°, ∴∠B1C1E+∠M1C1N1=180°, ∴E、C1、N1,三点共线, 在△A1B1M1和△EB1M1中,A1B1=EB1∠A1B1M1=∠EB1M1B1M1=B1M1, ∴△A1B1M1≌△EB1M1(SAS), ∴A1M1=EM1,∠1=∠2, ∵A1M1=M1N1, ∴EM1=M1N1, ∴∠3=∠4, ∵∠2+∠3=45°,∠4+∠5=45°, ∴∠1=∠2=∠5, ∵∠1+∠6=90°, ∴∠5+∠6=90°, ∴∠A1M1N1=180°﹣90°=90°. 28.(12分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m. (1)求此抛物线的表达式; (2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由; (3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少? 【解答】解:(1)由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax﹣12a, 即:﹣12a=4,解得:a=-13, 则抛物线的表达式为y=-13x2+13x+4; (2)存在,理由: 点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC=5,AB=7,BC=42,∠OAB=∠OBA=45°, 将点B、C的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①, 同理可得直线AC的表达式为:y=43x+4, 设直线AC的中点为K(-32,4),过点M与CA垂直直线的表达式中的k值为-34, 同理可得过点K与直线AC垂直直线的表达式为:y=-34x+78⋯②, ①当AC=AQ时,如图1, 则AC=AQ=5, 设:QM=MB=n,则AM=7﹣n, 由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4), 故点Q(1,3); ②当AC=CQ时,如图1, CQ=5,则BQ=BC﹣CQ=42-5, 则QM=MB=8-522, 故点Q(522,8-522); ③当CQ=AQ时, 联立①②并解得:x=252(舍去); 故点Q的坐标为:Q(1,3)或(522,8-522); (3)设点P(m,-13m2+13m+4),则点Q(m,﹣m+4), ∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN, PN=PQsin∠PQN=22(-13m2+13m+4+m﹣4)=-26(m﹣2)2+223, ∵-26<0,∴PN有最大值, 当m=2时,PN的最大值为:223. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:04:55;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多