- 2021-11-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
实践 与 探索
26 . 3 实践与探索(1) [本课知识要点] 会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义. [MM及创新思维] 生活中,我们常会遇到与二次函数及其图象有关的问题,比如在2004雅典奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关.你知道二次函数在生活中的其它方面的运用吗? [实践与探索] 例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远? 解 如图,铅球落在x轴上,则y=0, 因此,. 解方程,得(不合题意,舍去). 所以,此运动员把铅球推出了10米. 探索 此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试. 例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m. (1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m) 分析 这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题. 解 (1)以O为原点,OA为y轴建立坐标系.设抛物线顶点为B,水流落水与x轴交点为C(如图26.3.3). 由题意得,A(0,1.25),B(1,2.25), 因此,设抛物线为. 将A(0,1.25)代入上式,得, 12 解得 所以,抛物线的函数关系式为. 当y=0时,解得 x=-0.5(不合题意,舍去),x=2.5, 所以C(2.5,0),即水池的半径至少要2.5m. (2)由于喷出的抛物线形状与(1)相同,可设此抛物线为. 由抛物线过点(0,1.25)和(3.5,0),可求得h= -1.6,k=3.7. 所以,水流最大高度应达3.7m. [当堂课内练习] 1.在排球赛中,一队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线? 2.在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中? [本课课外作业] A组 1.在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高2.44米,问能否射中球门? 2.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程. 下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). 根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元? 3.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m. (1)建立如图所示的直角坐标系,求抛物线的函数关系式; (2)该运动员身高1.8m,在这次跳投中,球在头顶上方 0.25m处出手,问:球出手时,他跳离地面的高度是多少? B组 4.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b所示的坐标系进行计算. (1)求该抛物线的函数关系式; (2)计算所需不锈钢管立柱的总长度. 12 5.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误. (1)求这条抛物线的函数关系式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳水会不会失误?并通过计算说明理由. [本课学习体会] 26 . 3 实践与探索(2) [本课知识要点] 让学生进一步体验把实际问题转化为有关二次函数知识的过程. [MM及创新思维] 二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决. [实践与探索] 例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。 (1)求y关于x的二次函数关系式,并注明x的取值范围; (2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少? 分析 若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利为(x-30)元,从而可列出函数关系式。 解 (1)根据题意,得 12 (30≤x≤70)。 (2)。 顶点坐标为(65,1950)。二次函数草图略。 经观察可知,当单价定为65元时,日均获利最多,是1950元。 例2。某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表: X(十万元) 0 1 2 … y 1 1.5 1.8 … (1)求y与x的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式; (3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大? 解 (1)设二次函数关系式为。 由表中数据,得 。 解得。 所以所求二次函数关系式为。 (2)根据题意,得。 (3)。 由于1≤x≤3,所以当1≤x≤2。5时,S随x的增大而增大。. [当堂课内练习] 1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价 ( ) A、5元 B、10元 C、15元 D、20元 12 2.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元? [本课课外作业] A组 1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件), 与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。 (1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); (2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 2.某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元? 3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式; (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? B组 4.行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能﹙车速不超过140千米/时﹚,对这种汽车进行测试,数据如下表: 刹车时车速(千米/时) 0 10 20 30 40 50 60 刹车距离 0 0.3 1.0 2.1 3.6 5.5 7.8 ﹙1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象; ﹙2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函数关系式; ﹙3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶? [本课学习体会] 26 . 3 实践与探索(3) [本课知识要点] (1)会求出二次函数与坐标轴的交点坐标; 12 (2)了解二次函数与一元二次方程、一元二次不等式之间的关系. [MM及创新思维] 给出三个二次函数:(1);(2);(3). 它们的图象分别为 观察图象与x轴的交点个数,分别是 个、 个、 个.你知道图象与x轴的交点个数与什么有关吗? 另外,能否利用二次函数的图象寻找方程,不等式或的解? [实践与探索] 例1.画出函数的图象,根据图象回答下列问题. (1)图象与x轴、y轴的交点坐标分别是什么? (2)当x取何值时,y=0?这里x的取值与方程有什么关系? (3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0? 解 图象如图26.3.4, (1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3). (2)当x= -1或x=3时,y=0,x的取值与方程的解相同. (3)当x<-1或x>3时,y>0;当 -1<x<3时,y<0. 回顾与反思 (1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决. (2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集. 12 例2.(1)已知抛物线,当k= 时,抛物线与x轴相交于两点. (2)已知二次函数的图象的最低点在x轴上,则a= . (3)已知抛物线与x轴交于两点A(α,0),B(β,0),且,则k的值是 . 分析 (1)抛物线与x轴相交于两点,相当于方程有两个不相等的实数根,即根的判别式⊿>0. (2)二次函数的图象的最低点在x轴上,也就是说,方程的两个实数根相等,即⊿=0. (3)已知抛物线与x轴交于两点A(α,0),B(β,0),即α、β是方程的两个根,又由于,以及,利用根与系数的关系即可得到结果. 请同学们完成填空. 回顾与反思 二次函数的图象与x轴有无交点的问题,可以转化为一元二次方程有无实数根的问题,这可从计算根的判别式入手. 例3.已知二次函数, (1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点; (2)m为何值时,这两个交点都在原点的左侧? (3)m为何值时,这个二次函数的图象的对称轴是y轴? 分析 (1)要说明不论m取任何实数,二次函数的图象必与x轴有两个交点,只要说明方程有两个不相等的实数根,即⊿>0. (2)两个交点都在原点的左侧,也就是方程有两个负实数根,因而必须符合条件①⊿>0,②,③.综合以上条件,可解得所求m的值的范围. (3)二次函数的图象的对称轴是y轴,说明方程 12 有一正一负两个实数根,且两根互为相反数,因而必须符合条件①⊿>0,②. 解 (1)⊿=,由,得,所以⊿>0,即不论m取任何实数,这个二次函数的图象必与x轴有两个交点. (2)由,得;由,得;又由(1),⊿>0,因此,当时,两个交点都在原点的左侧. (3)由,得m=2,因此,当m=2时,二次函数的图象的对称轴是y轴. 探索 第(3)题中二次函数的图象的对称轴是y轴,即二次函数是由函数上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题. [当堂课内练习] 1.已知二次函数的图象如图, 则方程的解是 , 不等式的解集是 , 不等式的解集是 . 2.抛物线与y轴的交点坐标为 ,与x轴的交点坐标为 . 3.已知方程的两根是,-1,则二次函数与x轴的两个交点间的距离为 . 4.函数的图象与x轴有且只有一个交点,求a的值及交点坐标. [本课课外作业] A组 1.已知二次函数,画出此抛物线的图象,根据图象回答下列问题. (1)方程的解是什么? (2)x取什么值时,函数值大于0?x取什么值时,函数值小于0? 2.如果二次函数的顶点在x轴上,求c的值. 3.不论自变量x取什么数,二次函数 12 的函数值总是正值,求m的取值范围. 4.已知二次函数, 求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图; (2)以此函数图象与x轴、y轴的交点为顶点的三角形面积; (3)x为何值时,y>0. 5.你能否画出适当的函数图象,求方程的解? B组 6.函数(m是常数)的图象与x轴的交点有 ( ) A.0个 B.1个 C.2个 D.1个或2个 7.已知二次函数. (1)说明抛物线与x轴有两个不同交点; (2)求这两个交点间的距离(关于a的表达式); (3)a取何值时,两点间的距离最小? [本课学习体会] 26 . 3 实践与探索(4) [本课知识要点] 掌握一元二次方程及二元二次方程组的图象解法. [MM及创新思维] 上节课的作业第5题:画图求方程的解,你是如何解决的呢?我们来看一看两位同学不同的方法. 甲:将方程化为,画出的图象,观察它与x轴的交点,得出方程的解. 乙:分别画出函数和的图象,观察它们的交点,把交点的横坐标作为方程的解. 你对这两种解法有什么看法?请与你的同学交流. [实践与探索] 例1.利用函数的图象,求下列方程的解: (1) ; (2). 分析 12 上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解. 解 (1)在同一直角坐标系中画出 函数和的图象, 如图26.3.5, 得到它们的交点(-3,9)、(1,1), 则方程的解为 –3,1. (2)先把方程化为 ,然后在同一直角 坐标系中画出函数和 的图象,如图26.3.6, 得到它们的交点(,)、(2,4), 则方程的解为 ,2. 回顾与反思 一般地,求一元二次方程的近似解时,可先将方程化为,然后分别画出函数和的图象,得出交点,交点的横坐标即为方程的解. 例2.利用函数的图象,求下列方程组的解: (1); (2). 分析 (1)可以通过直接画出函数和的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决. 解 (1)在同一直角坐标系中画出函数和的图象,如图26.3.7, 得到它们的交点(,)、(1,1), 12 则方程组的解为. (2)在同一直角坐标系中画出函数和的图象,如图26.3.8, 得到它们的交点(-2,0)、(3,15),则方程组的解为. 探索 (2)中的抛物线画出来比较麻烦,你能想出更好的解决此题的方法吗?比如利用抛物线的图象,请尝试一下. [当堂课内练习] 1.利用函数的图象,求下列方程的解: (1)(精确到0.1) ; (2). 2.利用函数的图象,求方程组的解: [本课课外作业] A组 1.利用函数的图象,求下列方程的解: (1) (2) 2.利用函数的图象,求下列方程组的解: (1); (2). B组 3.如图所示,二次函数与的图象交于A(-2,4)、B(8,2).求能使成立的x的取值范围。 12 [本课学习体会] 12查看更多