- 2021-11-07 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
圆的有关性质(3) 教案
24.1 圆(第3课时) 教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知 问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评:www.1230.org 初中数学资源网 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半. 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且 它的度数恰好等于这条弧所对的圆心角的度数的一半.” (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示 3 ∵∠AOC是△ABO的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=∠AOC (2)如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC=∠AOC吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC. (3)如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC=∠AOC吗?请同学们独立完成证明. 老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC 现在,我如果在画一个任意的圆周角∠AB′C,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导: 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目. 例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可. 解:BD=CD 理由是:如图24-30,连接AD ∵AB是⊙O的直径 ∴∠ADB=90°即AD⊥BC 又∵AC=AB ∴BD=CD 三、巩固练习 1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展 例2.如图,已知△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为R,求证:===2R. 分析:要证明===2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行. 证明:连接CO并延长交⊙O于D,连接DB ∵CD是直径 3 ∴∠DBC=90° 又∵∠A=∠D 在Rt△DBC中,sinD=,即2R= 同理可证:=2R,=2R ∴===2R 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆周角的概念; 2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半; 3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业 1.教材P95 综合运用9、10、 3查看更多