2020年贵州省遵义市中考数学试卷【含答案及详细解释、word可以编辑】

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年贵州省遵义市中考数学试卷【含答案及详细解释、word可以编辑】

‎2020年贵州省遵义市中考数学试卷 一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)‎ ‎1. ‎-3‎的绝对值是( )‎ A.‎3‎ B.‎-3‎ C.‎1‎‎3‎ D.‎‎±3‎ ‎2. 在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客‎18.25‎万人次,将‎18.25‎万用科学记数法表示为( )‎ A.‎1.825×‎‎10‎‎5‎ B.‎1.825×‎‎10‎‎6‎ C.‎1.825×‎‎10‎‎7‎ D.‎‎1.825×‎‎10‎‎8‎ ‎3. 一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则‎∠1‎的度数为( )‎ A.‎30‎‎∘‎ B.‎45‎‎∘‎ C.‎55‎‎∘‎ D.‎‎60‎‎∘‎ ‎4. 下列计算正确的是( )‎ A.x‎2‎‎+x=x‎3‎ B.‎(-3x‎)‎‎2‎=‎‎6‎x‎2‎ C.‎8x‎4‎÷2‎x‎2‎=‎4‎x‎2‎ D.‎(x-2y)(x+2y)‎=‎x‎2‎‎-2‎y‎2‎ ‎5. 某校‎7‎名学生在某次测量体温(单位:‎​‎‎∘‎C)时得到如下数据:‎36.3‎,‎36.4‎,‎36.5‎,‎36.7‎,‎36.6‎,‎36.5‎,‎36.5‎,对这组数据描述正确的是( )‎ A.众数是‎36.5‎ B.中位数是‎36.7‎ C.平均数是‎36.6‎ D.方差是‎0.4‎ ‎6. 已知x‎1‎,x‎2‎是方程x‎2‎‎-3x-2‎=‎0‎的两根,则x‎1‎‎2‎‎+‎x‎2‎‎2‎的值为( )‎ A.‎5‎ B.‎10‎ C.‎11‎ D.‎‎13‎ ‎7. 如图,把一块长为‎40cm,宽为‎30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为‎600cm‎2‎,设剪去小正方形的边长为xcm,则可列方程为( )‎ A.‎(30-2x)(40-x)‎=‎600‎ B.‎(30-x)(40-x)‎=‎‎600‎ C.‎(30-x)(40-2x)‎=‎600‎ D.‎(30-2x)(40-2x)‎=‎‎600‎ ‎8. 新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S‎1‎、S‎2‎分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )‎ A. B.‎ C. D.‎ ‎9. 如图,在菱形ABCD中,AB=‎5‎,AC=‎6‎,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为( )‎ A.‎12‎‎5‎ B.‎18‎‎5‎ C.‎4‎ D.‎‎24‎‎5‎ ‎ 18 / 18‎ ‎10. 构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan‎15‎‎∘‎时,如图.在Rt△ACB中,‎∠C=‎90‎‎∘‎,‎∠ABC=‎30‎‎∘‎,延长CB使BD=AB,连接AD,得‎∠D=‎15‎‎∘‎,所以tan‎15‎‎∘‎=ACCD=‎1‎‎2+‎‎3‎=‎2-‎‎3‎‎(2+‎3‎)(2-‎3‎)‎=2-‎‎3‎.类比这种方法,计算tan‎22.5‎‎∘‎的值为( )‎ A.‎2‎‎+1‎ B.‎2‎‎-1‎ C.‎2‎ D.‎‎1‎‎2‎ ‎11. 如图,‎△ABO的顶点A在函数y=kx(x>0)‎的图象上,‎∠ABO=‎90‎‎∘‎,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为‎3‎,则k的值为( )‎ A.‎9‎ B.‎12‎ C.‎15‎ D.‎‎18‎ ‎12. 抛物线y=ax‎2‎+bx+c的对称轴是直线x=‎-2‎.抛物线与x轴的一个交点在点‎(-4, 0)‎和点‎(-3, 0)‎之间,其部分图象如图所示,下列结论中正确的个数有( )‎ ‎①‎4a-b=‎0‎;②c≤3a;③关于x的方程ax‎2‎+bx+c=‎2‎有两个不相等实数根;④b‎2‎‎+2b>4ac.‎ A.‎1‎个 B.‎2‎个 C.‎3‎个 D.‎4‎个 二、填空题(本小题共4小题,每小题4分,共16分,答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)‎ ‎13. 计算:‎12‎‎-‎‎3‎的结果是________.‎ ‎14. 如图,直线y=kx+b(k、b是常数k≠0)‎与直线y=‎2‎交于点A(4, 2)‎,则关于x的不等式kx+b<2‎的解集为________.‎ ‎15. 如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将‎△ABE沿BE折叠,使点A的对应点A'‎落在MN上.若CD=‎5‎,则BE的长是________.‎ ‎16. 如图,‎⊙O是‎△ABC的外接圆,‎∠BAC=‎45‎‎∘‎,AD⊥BC于点D,延长AD交‎⊙O于点E,若BD=‎4‎,CD=‎1‎,则DE的长是________.‎ ‎ 18 / 18‎ 三、解答题(本题共有8小题,共86分.答题请用黑色量水笔或黑色签字笔书写在答题卡的相应位置上解答时应写出必要的文字说明、证明过程成演算步骤)‎ ‎17. 计算:‎ ‎(1)sin‎30‎‎∘‎-(π-3.14‎)‎‎0‎+(-‎‎1‎‎2‎‎)‎‎-2‎;‎ ‎(2)解方程;‎1‎x-2‎‎=‎‎3‎‎2x-3‎.‎ ‎18. 化简式子x‎2‎‎-2xx‎2‎‎÷(x-‎4x-4‎x)‎,从‎0‎、‎1‎、‎2‎中取一个合适的数作为x的值代入求值.‎ ‎19. 某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为‎2.2m,为了解自己的有效测温区间.身高‎1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为‎18‎‎∘‎;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为‎60‎‎∘‎.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到‎0.1m,sin‎18‎‎∘‎≈0.31‎,cos‎18‎‎∘‎≈0.95‎,tan‎18‎‎∘‎≈0.32‎)‎ ‎ 18 / 18‎ ‎20. 如图,AB是‎⊙O的直径,点C是‎⊙O上一点,‎∠CAB的平分线AD交BC于点D,过点D作DE // BC交AC的延长线于点E.‎ ‎(1)求证:DE是‎⊙O的切线;‎ ‎(2)过点D作DF⊥AB于点F,连接BD.若OF=‎1‎,BF=‎2‎,求BD的长度.‎ ‎21. 遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.‎ 课外劳动时间频数分布表 劳动时间分组 频数 频率 ‎0≤t<20‎ ‎2‎ ‎0.1‎ ‎20≤t<40‎ ‎4‎ m ‎40≤t<60‎ ‎6‎ ‎0.3‎ ‎60≤t<80‎ a ‎0.25‎ ‎80≤t<100‎ ‎3‎ ‎0.15‎ 解答下列问题:‎ ‎(1)频数分布表中a=________,m=________;将频数分布直方图补充完整;‎ ‎(2)若七年级共有学生‎400‎人,试估计该校七年级学生一学期课外劳动时间不少于‎60h的人数;‎ ‎(3)已知课外劳动时间在‎60h≤t<80h的男生人数为‎2‎人,其余为女生,现从该组中任选‎2‎人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为‎1‎男‎1‎女的概率.‎ ‎ 18 / 18‎ ‎22. 为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为‎25‎元/个,乙种型号水杯进价为‎45‎元/个,下表是前两月两种型号水杯的销售情况:‎ 时间 销售数量(个)‎ 销售收入(元)(销售收入=售价‎×‎销售数量)‎ 甲种型号 乙种型号 第一月 ‎22‎ ‎8‎ ‎1100‎ 第二月 ‎38‎ ‎24‎ ‎2460‎ ‎(1)求甲、乙两种型号水杯的售价;‎ ‎(2)第三月超市计划再购进甲、乙两种型号水杯共‎80‎个,这批水杯进货的预算成本不超过‎2600‎元,且甲种型号水杯最多购进‎55‎个,在‎80‎个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.‎ ‎23. 如图,在边长为‎4‎的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN // BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.‎ ‎(1)求证:EF=DE;‎ ‎(2)当AF=‎2‎时,求GE的长.‎ ‎ 18 / 18‎ ‎24. 如图,抛物线y=ax‎2‎+‎9‎‎4‎x+c经过点A(-1, 0)‎和点C(0, 3)‎与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP // y轴,交抛物线于点P.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)在抛物线上是否存在一点Q,使得‎△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;‎ ‎(3)以M为圆心,MP为半径作‎⊙M,当‎⊙M与坐标轴相切时,求出‎⊙M的半径.‎ ‎ 18 / 18‎ 参考答案与试题解析 ‎2020年贵州省遵义市中考数学试卷 一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)‎ ‎1.【答案】‎ A ‎【解答】‎ ‎-3‎的绝对值是‎3‎,‎ ‎2.【答案】‎ A ‎【解答】‎ ‎18.25‎万=‎182500‎,用科学记数法表示为:‎1.825×‎‎10‎‎5‎.‎ ‎3.【答案】‎ B ‎【解答】‎ ‎∵ AB // CD,‎ ‎∴ ‎∠1‎=‎∠D=‎45‎‎∘‎,‎ ‎4.【答案】‎ C ‎【解答】‎ ‎(-3x‎)‎‎2‎‎=‎9‎x‎2‎,故选项B错误(1)‎8x‎4‎÷2‎x‎2‎=‎4‎x‎2‎,故选项C正确‎(2)(x-2y)(x+2y)‎=x‎2‎‎-4‎y‎2‎,故选项D错误(3)故选:C.‎ ‎5.【答案】‎ A ‎【解答】‎ ‎7‎个数中‎36.5‎出现了三次,次数最多,即众数为‎36.5‎,故A选项正确,符合题意;‎ 将‎7‎个数按从小到大的顺序排列为:‎36.3‎,‎36.4‎,‎36.5‎,‎36.5‎,‎36.5‎,‎36.6‎,‎36.7‎,第‎4‎个数为‎36.5‎,即中位数为‎36.5‎,故B选项错误,不符合题意;‎ x‎¯‎‎=‎1‎‎7‎×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)‎‎=‎36.5‎,故C选项错误,不符合题意;‎ S‎2‎‎=‎1‎‎7‎[(36.3-36.5‎)‎‎2‎+(36.4-36.5‎)‎‎2‎+3×(36.5-36.5‎)‎‎2‎+(36.6-36.5‎)‎‎2‎+(36.7-36.5‎)‎‎2‎]=‎‎1‎‎70‎‎,故D选项错误,不符合题意;‎ ‎6.【答案】‎ D ‎【解答】‎ 根据题意得x‎1‎‎+‎x‎2‎=‎3‎,x‎1‎x‎2‎=‎-2‎,‎ 所以x‎1‎‎2‎‎+‎x‎2‎‎2‎=‎(x‎1‎+x‎2‎‎)‎‎2‎-2‎x‎1‎x‎2‎=‎3‎‎2‎‎-2×(-2)‎=‎13‎.‎ ‎7.【答案】‎ D ‎【解答】‎ 设剪去小正方形的边长是xcm,则纸盒底面的长为‎(40-2x)cm,宽为‎(30-2x)cm,‎ 根据题意得:‎(40-2x)(30-2x)‎=‎32‎.‎ ‎8.【答案】‎ C ‎【解答】‎ A‎.此函数图象中,S‎2‎先达到最大值,即兔子先到终点,不符合题意;‎ B‎.此函数图象中,S‎2‎第‎2‎段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;‎ C‎.此函数图象中,S‎1‎、S‎2‎同时到达终点,符合题意;‎ D‎.此函数图象中,S‎1‎先达到最大值,即乌龟先到终点,不符合题意.‎ ‎9.【答案】‎ ‎ 18 / 18‎ D ‎【解答】‎ 如图.‎ ‎∵ 四边形ABCD是菱形,AC=‎6‎,‎ ‎∴ AC⊥BD,OA=‎1‎‎2‎AC=‎3‎,BD=‎2OB,‎ ‎∵ AB=‎5‎,‎ ‎∴ OB=AB‎2‎-OA‎2‎=4‎,‎ ‎∴ BD=‎2OB=‎8‎,‎ ‎∵ S菱形ABCD=AB⋅DE=‎1‎‎2‎AC⋅BD,‎ ‎∴ DE=‎1‎‎2‎AC⋅BDAB=‎1‎‎2‎‎×6×8‎‎5‎=‎‎24‎‎5‎.‎ ‎10.【答案】‎ B ‎【解答】‎ 在Rt△ACB中,‎∠C=‎90‎‎∘‎,‎∠ABC=‎45‎‎∘‎,延长CB使BD=AB,连接AD,得‎∠D=‎22.5‎‎∘‎,‎ 设AC=BC=‎1‎,则AB=BD=‎‎2‎,‎ ‎∴ tan‎22.5‎‎∘‎=ACCD=‎1‎‎1+‎‎2‎=‎2‎-1‎,‎ ‎11.【答案】‎ D ‎【解答】‎ ‎∵ NQ // MP // OB,‎ ‎∴ ‎△ANQ∽△AMP∽△AOB,‎ ‎∵ M、N是OA的三等分点,‎ ‎∴ ANAM‎=‎‎1‎‎2‎,ANAO‎=‎‎1‎‎3‎,‎ ‎∴ S‎△ANQS‎△AMP‎=‎‎1‎‎4‎,‎ ‎∵ 四边形MNQP的面积为‎3‎,‎ ‎∴ S‎△ANQ‎3+‎S‎△ANQ‎=‎‎1‎‎4‎,‎ ‎∴ S‎△ANQ=‎1‎,‎ ‎∵ ‎1‎S‎△AOB‎=(ANAO‎)‎‎2‎=‎‎1‎‎9‎,‎ ‎∴ S‎△AOB=‎9‎,‎ ‎∴ k=‎2‎S‎△AOB=‎18‎,‎ ‎12.【答案】‎ C ‎【解答】‎ ‎∵ 抛物线的对称轴为直线x=-b‎2a=-2‎,‎ ‎∴ ‎4a-b=‎0‎,所以①正确;‎ ‎∵ 与x轴的一个交点在‎(-3, 0)‎和‎(-4, 0)‎之间,‎ ‎∴ 由抛物线的对称性知,另一个交点在‎(-1, 0)‎和‎(0, 0)‎之间,‎ ‎∴ x=‎-1‎时y>0‎,且b=‎4a,‎ 即a-b+c=a-4a+c=‎-3a+c>0‎,‎ ‎∴ c>3a,所以②错误;‎ ‎∵ 抛物线与x轴有两个交点,且顶点为‎(-2, 3)‎,‎ ‎∴ 抛物线与直线y=‎2‎有两个交点,‎ ‎∴ 关于x的方程ax‎2‎+bx+c=‎2‎有两个不相等实数根,所以③正确;‎ ‎∵ 抛物线的顶点坐标为‎(-2, 3)‎,‎ ‎∴ ‎4ac-‎b‎2‎‎4a‎=3‎,‎ ‎ 18 / 18‎ ‎∴ b‎2‎‎+12a=‎4ac,‎ ‎∵ ‎4a-b=‎0‎,‎ ‎∴ b=‎4a,‎ ‎∴ b‎2‎‎+3b=‎4ac,‎ ‎∵ a<0‎,‎ ‎∴ b=‎4a<0‎,‎ ‎∴ b‎2‎‎+2b>4ac,所以④正确;‎ 二、填空题(本小题共4小题,每小题4分,共16分,答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)‎ ‎13.【答案】‎ ‎3‎ ‎【解答】‎ ‎12‎‎-‎3‎=2‎3‎-‎3‎=‎‎3‎‎.‎ ‎14.【答案】‎ x<4‎ ‎【解答】‎ ‎∵ 直线y=kx+b与直线y=‎2‎交于点A(4, 2)‎,‎ ‎∴ x<4‎时,y<2‎,‎ ‎∴ 关于x的不等式kx+b<2‎的解集为x<4‎.‎ ‎15.【答案】‎ ‎10‎‎3‎‎3‎ ‎【解答】‎ ‎∵ 将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,‎ ‎∴ AB=‎2BM,‎∠A'MB=‎90‎‎∘‎,MN // BC.‎ ‎∵ 将‎△ABE沿BE折叠,使点A的对应点A'‎落在MN上.‎ ‎∴ A'B=AB=‎2BM.‎ 在Rt△A'MB中,∵ ‎∠A'MB=‎90‎‎∘‎,‎ ‎∴ sin∠MA'B=BMBA‎'‎=‎‎1‎‎2‎,‎ ‎∴ ‎∠MA'B=‎30‎‎∘‎,‎ ‎∵ MN // BC,‎ ‎∴ ‎∠CBA'‎=‎∠MA'B=‎30‎‎∘‎,‎ ‎∵ ‎∠ABC=‎90‎‎∘‎,‎ ‎∴ ‎∠ABA'‎=‎60‎‎∘‎,‎ ‎∴ ‎∠ABE=‎∠EBA'‎=‎30‎‎∘‎,‎ ‎∴ BE=ABcos30‎‎5‎‎3‎‎2‎=‎‎10‎‎3‎‎3‎.‎ ‎16.【答案】‎ ‎41‎‎-5‎‎2‎ ‎【解答】‎ 连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,‎ ‎∵ ‎⊙O是‎△ABC的外接圆,‎∠BAC=‎45‎‎∘‎,‎ ‎∴ ‎∠BOC=‎90‎‎∘‎,‎ ‎∵ BD=‎4‎,CD=‎1‎,‎ ‎∴ BC=‎4+1‎=‎5‎,‎ ‎∴ OB=OC=‎‎5‎‎2‎‎2‎,‎ ‎∴ OA=‎‎5‎‎2‎‎2‎,OF=BF=‎‎5‎‎2‎,‎ ‎∴ DF=BD-BF=‎‎3‎‎2‎,‎ ‎∴ OG=‎‎3‎‎2‎,GD=‎‎5‎‎2‎,‎ 在Rt△AGO中,AG=OA‎2‎-OG‎2‎=‎‎41‎‎2‎,‎ ‎ 18 / 18‎ ‎∴ AD=AG+GD=‎‎41‎‎+5‎‎2‎,‎ ‎∴ AD×DE=BD×CD,‎ DE=‎4×1‎‎41‎‎+5‎‎2‎=‎‎41‎‎-5‎‎2‎‎.‎ 三、解答题(本题共有8小题,共86分.答题请用黑色量水笔或黑色签字笔书写在答题卡的相应位置上解答时应写出必要的文字说明、证明过程成演算步骤)‎ ‎17.【答案】‎ 原式‎=‎1‎‎2‎-1+4‎ ‎=‎3‎‎1‎‎2‎;‎ 去分母得:‎2x-3‎=‎3x-6‎,‎ 解得:x=‎3‎,‎ 经检验x=‎3‎是分式方程的解.‎ ‎【解答】‎ 原式‎=‎1‎‎2‎-1+4‎ ‎=‎3‎‎1‎‎2‎;‎ 去分母得:‎2x-3‎=‎3x-6‎,‎ 解得:x=‎3‎,‎ 经检验x=‎3‎是分式方程的解.‎ ‎18.【答案】‎ 原式‎=x(x-2)‎x‎2‎÷‎x‎2‎‎-4x+4‎x ‎=x(x-2)‎x‎2‎⋅‎x‎(x-2‎‎)‎‎2‎ ‎=‎‎1‎x-2‎‎,‎ ‎∵ x≠0‎,‎2‎,‎ ‎∴ 当x=‎1‎时,原式=‎-1‎.‎ ‎【解答】‎ 原式‎=x(x-2)‎x‎2‎÷‎x‎2‎‎-4x+4‎x ‎=x(x-2)‎x‎2‎⋅‎x‎(x-2‎‎)‎‎2‎ ‎=‎‎1‎x-2‎‎,‎ ‎∵ x≠0‎,‎2‎,‎ ‎∴ 当x=‎1‎时,原式=‎-1‎.‎ ‎19.【答案】‎ 小聪在地面的有效测温区间MN的长度约为‎1.5m.‎ ‎【解答】‎ 延长BC交AD于点E,则AE=AD-DE=‎0.6m.‎ BE=AEtan18‎≈1.875m‎,CE=AEtan60‎≈0.374m.‎ 所以BC=BE-CE=‎1.528m.‎ 所以MN=BC≈1.5m.‎ ‎20.【答案】‎ 连接OD,如图:‎ ‎ 18 / 18‎ ‎∵ OA=OD,‎ ‎∴ ‎∠OAD=‎∠ADO,‎ ‎∵ AD平分‎∠CAB,‎ ‎∴ ‎∠DAE=‎∠OAD,‎ ‎∴ ‎∠ADO=‎∠DAE,‎ ‎∴ OD // AE,‎ ‎∵ DE // BC,‎ ‎∴ ‎∠E=‎90‎‎∘‎,‎ ‎∴ ‎∠ODE=‎180‎‎∘‎‎-∠E=‎90‎‎∘‎,‎ ‎∴ DE是‎⊙O的切线;‎ ‎∵ AB是‎⊙O的直径,‎ ‎∴ ‎∠ADB=‎90‎‎∘‎,‎ ‎∵ OF=‎1‎,BF=‎2‎,‎ ‎∴ OB=‎3‎,‎ ‎∴ AF=‎4‎,BA=‎6‎.‎ ‎∵ DF⊥AB,‎ ‎∴ ‎∠DFB=‎90‎‎∘‎,‎ ‎∴ ‎∠ADB=‎∠DFB,‎ 又∵ ‎∠DBF=‎∠ABD,‎ ‎∴ ‎△DBF∽△ABD,‎ ‎∴ BDBA‎=‎BFBD,‎ ‎∴ BD‎2‎=BF⋅BA=‎2×6‎=‎12‎.‎ ‎∴ BD=‎2‎‎3‎.‎ ‎【解答】‎ 连接OD,如图:‎ ‎∵ OA=OD,‎ ‎∴ ‎∠OAD=‎∠ADO,‎ ‎∵ AD平分‎∠CAB,‎ ‎∴ ‎∠DAE=‎∠OAD,‎ ‎∴ ‎∠ADO=‎∠DAE,‎ ‎∴ OD // AE,‎ ‎∵ DE // BC,‎ ‎∴ ‎∠E=‎90‎‎∘‎,‎ ‎∴ ‎∠ODE=‎180‎‎∘‎‎-∠E=‎90‎‎∘‎,‎ ‎∴ DE是‎⊙O的切线;‎ ‎∵ AB是‎⊙O的直径,‎ ‎∴ ‎∠ADB=‎90‎‎∘‎,‎ ‎∵ OF=‎1‎,BF=‎2‎,‎ ‎∴ OB=‎3‎,‎ ‎∴ AF=‎4‎,BA=‎6‎.‎ ‎∵ DF⊥AB,‎ ‎∴ ‎∠DFB=‎90‎‎∘‎,‎ ‎∴ ‎∠ADB=‎∠DFB,‎ 又∵ ‎∠DBF=‎∠ABD,‎ ‎∴ ‎△DBF∽△ABD,‎ ‎∴ BDBA‎=‎BFBD,‎ ‎ 18 / 18‎ ‎∴ BD‎2‎=BF⋅BA=‎2×6‎=‎12‎.‎ ‎∴ BD=‎2‎‎3‎.‎ ‎21.【答案】‎ ‎5‎‎,‎‎0.2‎ ‎400×(0.25+0.15)‎‎=‎160‎(人);‎ 根据题意画出树状图,‎ 由树状图可知:‎ 共有‎20‎种等可能的情况,‎ ‎1‎男‎1‎女有‎12‎种,‎ 故所选学生为‎1‎男‎1‎女的概率为:‎ P=‎12‎‎20‎=‎‎3‎‎5‎‎.‎ ‎【解答】‎ a‎=‎(2÷0.1)×0.25‎=‎5‎,‎ m‎=‎4÷20‎=‎0.2‎,‎ 补全的直方图如图所示:‎ 故答案为:‎5‎,‎0.2‎;‎ ‎400×(0.25+0.15)‎‎=‎160‎(人);‎ 根据题意画出树状图,‎ 由树状图可知:‎ 共有‎20‎种等可能的情况,‎ ‎1‎男‎1‎女有‎12‎种,‎ 故所选学生为‎1‎男‎1‎女的概率为:‎ P=‎12‎‎20‎=‎‎3‎‎5‎‎.‎ ‎22.【答案】‎ 甲、乙两种型号水杯的销售单价分别为‎30‎元、‎55‎元;‎ 第三月的最大利润为‎550‎元 ‎【解答】‎ 设甲、乙两种型号水杯的销售单价分别为x元、y元,‎ ‎22x+8y=1100‎‎30x+24y=2460‎‎ ‎‎,解得,x=30‎y=55‎‎ ‎,‎ 答:甲、乙两种型号水杯的销售单价分别为‎30‎元、‎55‎元;‎ 由题意可得,‎ ‎25a+45(80-a)≤2600‎a≤55‎‎ ‎‎,‎ 解得:‎50≤a≤55‎,‎ w‎=‎(30-25)a+(55-45)(80-a)‎=‎-5a+800‎,‎ 故当a=‎50‎时,W有最大值,最大为‎550‎,‎ 答:第三月的最大利润为‎550‎元.‎ ‎ 18 / 18‎ ‎23.【答案】‎ 证明:∵ 四边形ABCD是正方形,AC是对角线,‎ ‎∴ ‎∠ECM=‎45‎‎∘‎,‎ ‎∵ MN // BC,‎∠BCM=‎90‎‎∘‎,‎ ‎∴ ‎∠NMC+∠BCM=‎180‎‎∘‎,‎∠MNB+∠B=‎180‎‎∘‎,‎ ‎∴ ‎∠NMC=‎90‎‎∘‎,‎∠MNB=‎90‎‎∘‎,‎ ‎∴ ‎∠MEC=‎∠MCE=‎45‎‎∘‎,‎∠DME=‎∠ENF=‎90‎‎∘‎,‎ ‎∴ MC=ME,‎ ‎∵ CD=MN,‎ ‎∴ DM=EN,‎ ‎∵ DE⊥EF,‎∠EDM+∠DEM=‎90‎‎∘‎,‎ ‎∴ ‎∠DEF=‎90‎‎∘‎,‎ ‎∴ ‎∠DEM+∠FEN=‎90‎‎∘‎,‎ ‎∴ ‎∠EDM=‎∠FEN,‎ 在‎△DME和‎△ENF中,‎ ‎∠EDM=∠FENDM=EN‎∠DME=∠ENF‎ ‎‎,‎ ‎∴ ‎△DME≅△ENF(ASA)‎,‎ ‎∴ EF=DE;‎ 由(1)知,‎△DME≅△ENF,‎ ‎∴ ME=NF,‎ ‎∵ 四边形MNBC是矩形,‎ ‎∴ MC=BN,‎ 又∵ ME=MC,AB=‎4‎,AF=‎2‎,‎ ‎∴ BN=MC=NF=‎1‎,‎ ‎∵ ‎∠EMC=‎90‎‎∘‎,‎ ‎∴ CE=‎‎2‎,‎ ‎∵ AF // CD,‎ ‎∴ ‎△DGC∽△FGA,‎ ‎∴ CDAF‎=‎CGAG,‎ ‎∴ ‎4‎‎2‎‎=‎CGAG,‎ ‎∵ AB=BC=‎4‎,‎∠B=‎90‎‎∘‎,‎ ‎∴ AC=‎4‎‎2‎,‎ ‎∵ AC=AG+GC,‎ ‎∴ AG=‎‎4‎‎2‎‎3‎,CG=‎‎8‎‎2‎‎3‎,‎ ‎∴ GE=GC-CE=‎8‎‎2‎‎3‎-‎2‎=‎‎5‎‎2‎‎3‎.‎ ‎【解答】‎ 证明:∵ 四边形ABCD是正方形,AC是对角线,‎ ‎∴ ‎∠ECM=‎45‎‎∘‎,‎ ‎∵ MN // BC,‎∠BCM=‎90‎‎∘‎,‎ ‎∴ ‎∠NMC+∠BCM=‎180‎‎∘‎,‎∠MNB+∠B=‎180‎‎∘‎,‎ ‎∴ ‎∠NMC=‎90‎‎∘‎,‎∠MNB=‎90‎‎∘‎,‎ ‎∴ ‎∠MEC=‎∠MCE=‎45‎‎∘‎,‎∠DME=‎∠ENF=‎90‎‎∘‎,‎ ‎∴ MC=ME,‎ ‎∵ CD=MN,‎ ‎∴ DM=EN,‎ ‎ 18 / 18‎ ‎∵ DE⊥EF,‎∠EDM+∠DEM=‎90‎‎∘‎,‎ ‎∴ ‎∠DEF=‎90‎‎∘‎,‎ ‎∴ ‎∠DEM+∠FEN=‎90‎‎∘‎,‎ ‎∴ ‎∠EDM=‎∠FEN,‎ 在‎△DME和‎△ENF中,‎ ‎∠EDM=∠FENDM=EN‎∠DME=∠ENF‎ ‎‎,‎ ‎∴ ‎△DME≅△ENF(ASA)‎,‎ ‎∴ EF=DE;‎ 由(1)知,‎△DME≅△ENF,‎ ‎∴ ME=NF,‎ ‎∵ 四边形MNBC是矩形,‎ ‎∴ MC=BN,‎ 又∵ ME=MC,AB=‎4‎,AF=‎2‎,‎ ‎∴ BN=MC=NF=‎1‎,‎ ‎∵ ‎∠EMC=‎90‎‎∘‎,‎ ‎∴ CE=‎‎2‎,‎ ‎∵ AF // CD,‎ ‎∴ ‎△DGC∽△FGA,‎ ‎∴ CDAF‎=‎CGAG,‎ ‎∴ ‎4‎‎2‎‎=‎CGAG,‎ ‎∵ AB=BC=‎4‎,‎∠B=‎90‎‎∘‎,‎ ‎∴ AC=‎4‎‎2‎,‎ ‎∵ AC=AG+GC,‎ ‎∴ AG=‎‎4‎‎2‎‎3‎,CG=‎‎8‎‎2‎‎3‎,‎ ‎∴ GE=GC-CE=‎8‎‎2‎‎3‎-‎2‎=‎‎5‎‎2‎‎3‎.‎ ‎24.【答案】‎ 把点A(-1, 0)‎和点C (0, 3)‎代入y=ax‎2‎+‎9‎‎4‎x+c得:‎0=a-‎9‎‎4‎+c‎3=c‎ ‎,‎ 解得:a=-‎‎3‎‎4‎c=3‎‎ ‎,‎ ‎∴ 抛物线的解析式为:y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎;‎ 不存在,理由如下:‎ ‎①当点Q在y轴右边时,如图‎1‎所示:‎ 假设‎△QCO为等边三角形,‎ 过点Q作QH⊥OC于H,‎ ‎∵ 点C (0, 3)‎,‎ ‎∴ OC=‎3‎,‎ 则OH=‎1‎‎2‎OC=‎‎3‎‎2‎,tan‎60‎‎∘‎=‎QHOH,‎ ‎∴ QH=OH⋅tan‎60‎‎∘‎=‎3‎‎2‎×‎3‎=‎‎3‎‎3‎‎2‎,‎ ‎∴ Q(‎3‎‎3‎‎2‎, ‎3‎‎2‎)‎,‎ 把x=‎‎3‎‎3‎‎2‎代入y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,‎ 得:y=‎27‎‎3‎‎8‎-‎33‎‎16‎≠‎‎3‎‎2‎,‎ ‎∴ 假设不成立,‎ ‎ 18 / 18‎ ‎∴ 当点Q在y轴右边时,不存在‎△QCO为等边三角形;‎ ‎②当点Q在y轴的左边时,如图‎2‎所示:‎ 假设‎△QCO为等边三角形,‎ 过点Q作QT⊥OC于T,‎ ‎∵ 点C (0, 3)‎,‎ ‎∴ OC=‎3‎,‎ 则OT=‎1‎‎2‎OC=‎‎3‎‎2‎,tan‎60‎‎∘‎=‎QTOT,‎ ‎∴ QT=OT⋅tan‎60‎‎∘‎=‎3‎‎2‎×‎3‎=‎‎3‎‎3‎‎2‎,‎ ‎∴ Q(-‎3‎‎3‎‎2‎, ‎3‎‎2‎)‎,‎ 把x=-‎‎3‎‎3‎‎2‎代入y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,‎ 得:y=-‎27‎‎3‎‎8‎-‎33‎‎16‎≠‎‎3‎‎2‎,‎ ‎∴ 假设不成立,‎ ‎∴ 当点Q在y轴左边时,不存在‎△QCO为等边三角形;‎ 综上所述,在抛物线上不存在一点Q,使得‎△QCO是等边三角形;‎ 令‎-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎=‎0‎,‎ 解得:x‎1‎=‎-1‎,x‎2‎=‎4‎,‎ ‎∴ B(4, 0)‎,‎ 设BC直线的解析式为:y=kx+b,‎ 把B、C的坐标代入则‎0=4k+b‎3=b‎ ‎,‎ 解得:k=-‎‎3‎‎4‎b=3‎‎ ‎,‎ ‎∴ BC直线的解析式为:y=-‎3‎‎4‎x+3‎,‎ 当‎⊙M与x轴相切时,如图‎3‎所示:‎ 延长PM交AB于点D,‎ 则点D为‎⊙M与x轴的切点,即PM=MD,‎ 设P(x, -‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)‎,M(x, -‎3‎‎4‎x+3)‎,‎ 则PD=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,MD=-‎3‎‎4‎x+3‎,‎ ‎∴ ‎(-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)-(-‎3‎‎4‎x+3)=-‎3‎‎4‎x+3‎,‎ 解得:x‎1‎=‎1‎,x‎2‎=‎4‎(不合题意舍去),‎ ‎∴ ‎⊙M的半径为:MD=-‎3‎‎4‎+3=‎‎9‎‎4‎;‎ 当‎⊙M与y轴相切时,如图‎4‎所示:‎ 延长PM交AB于点D,过点M作ME⊥y轴于E,‎ 则点E为‎⊙M与y轴的切点,即PM=ME,PD-MD=EM=x,‎ 设P(x, -‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)‎,M(x, -‎3‎‎4‎x+3)‎,‎ 则PD=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,MD=-‎3‎‎4‎x+3‎,‎ ‎∴ ‎(-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)-(-‎3‎‎4‎x+3)‎=x,‎ 解得:x‎1‎‎=‎‎8‎‎3‎,x‎2‎=‎0‎(不合题意舍去),‎ ‎∴ ‎⊙M的半径为:EM=‎‎8‎‎3‎;‎ 综上所述,‎⊙M的半径为‎9‎‎4‎或‎8‎‎3‎.‎ ‎ 18 / 18‎ ‎【解答】‎ 把点A(-1, 0)‎和点C (0, 3)‎代入y=ax‎2‎+‎9‎‎4‎x+c得:‎0=a-‎9‎‎4‎+c‎3=c‎ ‎,‎ 解得:a=-‎‎3‎‎4‎c=3‎‎ ‎,‎ ‎∴ 抛物线的解析式为:y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎;‎ 不存在,理由如下:‎ ‎①当点Q在y轴右边时,如图‎1‎所示:‎ 假设‎△QCO为等边三角形,‎ 过点Q作QH⊥OC于H,‎ ‎∵ 点C (0, 3)‎,‎ ‎∴ OC=‎3‎,‎ 则OH=‎1‎‎2‎OC=‎‎3‎‎2‎,tan‎60‎‎∘‎=‎QHOH,‎ ‎∴ QH=OH⋅tan‎60‎‎∘‎=‎3‎‎2‎×‎3‎=‎‎3‎‎3‎‎2‎,‎ ‎∴ Q(‎3‎‎3‎‎2‎, ‎3‎‎2‎)‎,‎ 把x=‎‎3‎‎3‎‎2‎代入y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,‎ 得:y=‎27‎‎3‎‎8‎-‎33‎‎16‎≠‎‎3‎‎2‎,‎ ‎∴ 假设不成立,‎ ‎∴ 当点Q在y轴右边时,不存在‎△QCO为等边三角形;‎ ‎②当点Q在y轴的左边时,如图‎2‎所示:‎ 假设‎△QCO为等边三角形,‎ 过点Q作QT⊥OC于T,‎ ‎∵ 点C (0, 3)‎,‎ ‎∴ OC=‎3‎,‎ 则OT=‎1‎‎2‎OC=‎‎3‎‎2‎,tan‎60‎‎∘‎=‎QTOT,‎ ‎∴ QT=OT⋅tan‎60‎‎∘‎=‎3‎‎2‎×‎3‎=‎‎3‎‎3‎‎2‎,‎ ‎∴ Q(-‎3‎‎3‎‎2‎, ‎3‎‎2‎)‎,‎ ‎ 18 / 18‎ 把x=-‎‎3‎‎3‎‎2‎代入y=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,‎ 得:y=-‎27‎‎3‎‎8‎-‎33‎‎16‎≠‎‎3‎‎2‎,‎ ‎∴ 假设不成立,‎ ‎∴ 当点Q在y轴左边时,不存在‎△QCO为等边三角形;‎ 综上所述,在抛物线上不存在一点Q,使得‎△QCO是等边三角形;‎ 令‎-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎=‎0‎,‎ 解得:x‎1‎=‎-1‎,x‎2‎=‎4‎,‎ ‎∴ B(4, 0)‎,‎ 设BC直线的解析式为:y=kx+b,‎ 把B、C的坐标代入则‎0=4k+b‎3=b‎ ‎,‎ 解得:k=-‎‎3‎‎4‎b=3‎‎ ‎,‎ ‎∴ BC直线的解析式为:y=-‎3‎‎4‎x+3‎,‎ 当‎⊙M与x轴相切时,如图‎3‎所示:‎ 延长PM交AB于点D,‎ 则点D为‎⊙M与x轴的切点,即PM=MD,‎ 设P(x, -‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)‎,M(x, -‎3‎‎4‎x+3)‎,‎ 则PD=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,MD=-‎3‎‎4‎x+3‎,‎ ‎∴ ‎(-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)-(-‎3‎‎4‎x+3)=-‎3‎‎4‎x+3‎,‎ 解得:x‎1‎=‎1‎,x‎2‎=‎4‎(不合题意舍去),‎ ‎∴ ‎⊙M的半径为:MD=-‎3‎‎4‎+3=‎‎9‎‎4‎;‎ 当‎⊙M与y轴相切时,如图‎4‎所示:‎ 延长PM交AB于点D,过点M作ME⊥y轴于E,‎ 则点E为‎⊙M与y轴的切点,即PM=ME,PD-MD=EM=x,‎ 设P(x, -‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)‎,M(x, -‎3‎‎4‎x+3)‎,‎ 则PD=-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3‎,MD=-‎3‎‎4‎x+3‎,‎ ‎∴ ‎(-‎3‎‎4‎x‎2‎+‎9‎‎4‎x+3)-(-‎3‎‎4‎x+3)‎=x,‎ 解得:x‎1‎‎=‎‎8‎‎3‎,x‎2‎=‎0‎(不合题意舍去),‎ ‎∴ ‎⊙M的半径为:EM=‎‎8‎‎3‎;‎ 综上所述,‎⊙M的半径为‎9‎‎4‎或‎8‎‎3‎.‎ ‎ 18 / 18‎ ‎ 18 / 18‎
查看更多

相关文章

您可能关注的文档