数学冀教版九年级上册课件25-3相似三角形

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学冀教版九年级上册课件25-3相似三角形

25.3相似三角形 导入新课 讲授新课 当堂练习 课堂小结 1.理解并掌握相似三角形的定义,并能够根据其解决简单问题. 2.掌握运用平行线判定两个三角形相似的方法. (重点、难点) 问题1 观察下列图形,试着归纳形似图形的性 质. 问题2 相似比的定义是什么? 相似多边形对应边的比叫做相似比. 相似三角形的概念 我们就说△ABC与△A′B′C′______,记作 __________________,△ABC与△A′B′C′相似比是k, △A′B′C′与△ABC的相似比是____. 在相似多边形中,最简单的就是相似三角形. 在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, kCA AC CB BC BA AB  //////且 △ABC∽△A′B′C′ 相似 1 k 反之如果△ABC∽△A′B′C′,则有 ∠A=_____,∠B=_____,∠C=____, 且 . AB BC AC kA B B C A C    ∠A′ ∠B′ ∠C′ 相似比为1时,相似的 两个图形有什么关系? 当相似比等于1时,相似图形即是全等图形,全等是一种 特殊的相似. 用平行线判定两个三角形相似 如图,DE//BC, △ADE与△ABC有什么关系?说明理由. A B C D 解:相似,在△ADE与△ABC中, ∠A= ∠A. ∵ DE//BC, ∴∠ADE=∠B, ∠AED=∠C, 过E作EF//AB交BC于F AC AE AB AD  F BC BF AC AE 则 E BC DE AC AE AB AD  ∵四边形DBFE是平行四边形, ∴DE=BF. BC DE AC AE  ∴△ADE∽△ABC 平行于三角形一边的直线与其他两边(或它们的延长线) 相交,所得的三角形与原三角形相似. “A”型 “X”型 (图2) D E O B C A B C D E (图1) 归纳 1.如果两个三角形的相似比为1,那么这两个三角形_____. 2.若△ABC与△A′B′C′相似,一组对应边的长为AB=3 cm,A′B′= 4 cm,那么△A′B′C′与△ABC的相似比是____ . 3.若△ABC的三条边长的比为3cm、5cm、6cm,与其相似的另一 个△A′B′C′的最小边长为12 cm,那么△ A′B′C′的最大边长是 _____. 4.已知△ABC的三条边长3cm,4cm,5cm,△ABC∽△A1B1C1,那么 △A1B1C1的形状是__________,又知△A1B1C1的最大边长为25cm, 那么△A1B1C1的面积为________. 全等 4︰3 24cm 直角三角形 150cm2 5.若△ABC与△A′B′C′相似,∠A=55°,∠B=100°,那 么∠ C′的度数是( ) A.55° B.100° C.25° D.不能确定 6.把△ABC的各边分别扩大为原来的3倍,得到△A′B′C′, 下列结论不能成立的是( ) A.△ABC∽△A′B′C′ B.△ABC与△A′B′C′的各对应角相等 C.△ABC与△A′B′C′的相似比为 D.△ABC与△A′B′C′的相似比为 3 1 4 1 C C 2.当相似比等于1时,相似图形即是全等图形,全等是一种 特殊的相似; 3.平行于三角形一边的直线与其他两边(或它们的延长线)相 交,所得的三角形与原三角形相似. 1.相似三角形的对应边成比例,对应角相等,相似比等于 对应边的比;
查看更多

相关文章

您可能关注的文档