- 2021-11-01 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
初中数学八年级上册第十五章分式15-2分式的运算3整数指数幂教案 人教版
15.2.3 整数指数幂 教学目标 1.知道负整数指数幂=(a≠0,n是正整数). 2.掌握整数指数幂的运算性质. 3.会用科学记数法表示小于1的数. 重点难点 1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学记数法表示小于1的数. 3.认知难点与突破方法 复习已学过的正整数指数幂的运算性质: (1)同底数的幂的乘法:(m,n是正整数); (2)幂的乘方:(m,n是正整数); (3)积的乘方:(n是正整数); (4)同底数的幂的除法:( a≠0,m,n是正整数,m>n); (5)商的乘方:(n是正整数); 0指数幂,即当a≠0时,. 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则. 学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a≠0时,===;另一方面,若把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,=(a≠0),也就是把的适用范围扩大了,这个运算性质适用于m、n可以是全体整数. 教学过程 一、例、习题的意图分析 1.[思考]提出问题,引出本节课的主要内容负整数指数幂的运算性质. 2.[思考]是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用. 3.教科书例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的. 4.教科书中间一段是介绍会用科学记数法表示小于1的数. 用科学记数法表示小于1的数,运用了负整数指数幂的知识. 3 用科学记数法不仅可以表示小于1的正数,也可以表示一个负数. 5.[思考]提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几. 6.教科书例10是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用科学记数法表示小于1的数. 二、课堂引入 1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:(m,n是正整数); (2)幂的乘方:(m,n是正整数); (3)积的乘方:(n是正整数); (4)同底数的幂的除法:( a≠0,m,n是正整数,m>n); (5)商的乘方:(n是正整数); 2.回忆0指数幂的规定,即当a≠0时,. 3.你还记得1纳米=10-9米,即1纳米=米吗? 4.计算当a≠0时,===,再假设正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,=(a≠0). 三、例题讲解 (教科书)例9 计算 [分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式. (教科书)例10 [分析] 是一个介绍纳米的应用题,是应用科学记数法表示小于1的数. 四、随堂练习 1. 填空 (1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2. 计算: (1)(x3y-2)2 (2)x2y-2 ·(x-2y)3 (3)(3x2y-2) 2 ÷(x-2y)3 五、课后练习 1. 用科学记数法表示下列各数: 0.000 04, -0.034, 0.000 000 45, 0.003 009 3 2. 计算: (1)(3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3 六、答案: 四、1.(1)-4 (2)4 (3)1 (4)1(5) (6) 2.(1) (2) (3) 五、1. (1)4×10-5 (2)3.4×10-2 (3)4.5×10-7 (4)3.009×10-3 2.(1) 1.2×10-5 (2)4×103 3查看更多