- 2021-11-01 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级上数学课件八年级上册数学课件《平行线的判定》 北师大版 (2)_北师大版
课前准备 导学案、 双色笔 激情投入,全力以赴! 庆安初级中学 张 亚 乐 【学习目标】 1、初步了解证明的基本步骤和书写格式; 2、掌握平行线的判定公理和定理,并会解决实际 问题; 3、在证明过程中,发展初步的演绎推理能力. 【重点难点】 重 点:掌握平行线的判定公理和定理; 难 点:平行线的判定方法的应用; 考 点:平行线的判定. 1 2a b c 1 2a b c ∵∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行) 书写格式: 4 1 2 3A B C E F D 5 H G 如果 , 能判定哪两条直线平行? ∠1 =∠22 53 4 想一想 两条直线被第三条直线所截,同时得到同位角、 内错角和同旁内角,由同位角相等可以判定两直线 平行,那么,能否利用内错角,或同旁内角来判定 两直线平行呢? 思考: 【合作探究】 1、证明:内错角相等,两直线平行. 2、证明:同旁内角互补,两直线平行. 已知,如图所示,∠1和∠2是直线a、b被直线c截 出的同旁内角,且∠1+∠2=180°. 求证:a∥b.(你有几种证明方法?) 两条直线被第三条直线所截,如果同旁内角 互补,那么这两条直线平行。 简单说成: 同旁内角互补,两直线平行 定理 ∴ a∥b ∵ ∠1+ ∠2=180o 1 a b c 2 (同旁内角互补,两直线平行) (已知) 3、已知,如图所示,直线a⊥c,b⊥c. 求证:a∥b. 定理: 在同一平面内,垂直于同一条直线的两直线 互相平行. 证明一个命题的一般步骤: (1)弄清条件和结论; (2)根据题意画出相应的图形; (3)根据条件和结论写出已知,求证; (4)分析证明思路,写出证明过程. 1 2 3 4 A B C D E F G2、填空: ∵∠1=∠2 ∴ ∥ ,( ) ∵∠2= ∴ ∥ ,同位角相等,两直线平行 ∵∠3+∠4=180° ∴ ∥ ,( ) ∴AC∥FG,( ) FG DE DE FG DEAC ∠4 内错角相等,两直线平行。 同旁内角互补,两直线平行。 平行于同一直线的两直线平行。 请同学们认真思考下列问题: 1.通过本堂课的学习我收获了什么? 2.我还有哪些没有解决的困惑? 如图,∠1=∠2,能判断AB∥DF吗?为什么? 若不能判断AB∥DF,你认为还需要再添加的一个条 件是什么呢?写出这个条件,并说明你的理由。 F D C AB E 1 2 不能. 添加∠CBD=∠EDB 内错角相等,两直线平行 想想还可以添加什么条件?查看更多