- 2021-10-27 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级数学上册第1章分式1-1分式第2课时分式的基本性质教学课件(新版)湘教版
1.1 分 式 第1章 分 式 导入新课 讲授新课 当堂练习 课堂小结 第2课时 分式的基本性质 学习目标 1.理解并掌握分式的基本性质.(重点) 2.会运用分式的基本性质进行分式的约分.(难点) 2 4 ? 5 10 与 相等吗 导入新课 复习引入 分数的 基本性质 2. 这些分数相等的依据是什么? 3 3 6 3 1 2 1.把3个苹果平均分给6个同学,每个同学得到几个 苹果? 3 6 解: 做一做:填空,并说一说下列等式从左到右变化的 依据. (1) 3 6 ; 4 12 (2) 6 3 . 18 3 8 9 9 1 讲授新课 分式的基本性质一 思考:下列两式成立吗?为什么? 3 3 0 4 4 c c c 5 5 0 6 6 c c c 2 1 2 2 ( 0) a a n n a,m,n m mn 你认为分式“ ”与“ ”;分式 “ ”与“ ”相等吗 均不为 ? 想一想:类比分数的基本性质,你能猜想分 式有什么性质吗? 思考: u分式的基本性质: 分式的分子与分母都乘同一个非零整式,所 得分式与原分式相等. 上述性质可以用式表示为: 知识要点 · · ( 0 ). f f h hg g h 3 2 2 3 31 0 6 x x xy x y x xy y x ( ) () , ( ); ( ) 2x 2 x a 22ab b 2 2 2 1 22 0 . a b b ab a b a a b ( ) ( ) ( ) , ( ) 例1 填空: 看分母如何变化,想分子如何变化. 看分子如何变化,想分母如何变化. 典例精析 想一想: (1)中 为什么 不给出x ≠0,而 (2)中 却给出 了b ≠0? 例2 根据分式的基本性质填空: 想一想: 运用分式的基本性质应注意什么? (1)“都” (2) “同一个” (3) “不为0” a2-1 x2 x-3 例3 不改变分式的值,把下列各式的分子与分母 的各项系数都化为整数. ⑴ ⑵ 0.01 - 5 . 0.3 + 0.04 x x 5 0.6 - 3 ;2 0.7 - 5 a b a b 0 01 5(2) 0 3 0 04 . x . x . (0.01 5) 100 500. (0.3 0.04) 100 30 4 x x x x 50 6 3(1 ) 20 7 5 . a b . a b 5(0.6 ) 30 18 503 ;2 21 12(0.7 ) 30 5 a b a b a ba b 不改变分式的值,使下列分子与分母都不含“-”号 ⑴ ⑵ ⑶ 3 7 a b 10 3 m n 解:(1)原式= (2)原式= (3)原式= 2 ; 5 x y 3 ; 7 a b 10 . 3 m n 练一练 2 5 x y 想一想:联想分数的约分,由例1你能想出如何对 分式进行约分? 分式的约分二 yx x xyx 2 2 222 xxx x 2 2 ( )x xy x x y x x x 2 1 )2( 2 xxxx xx ( ) ( ) 与分数约分类似,关键是要找出分式的分子 与分母的最简公分母. 像这样,根据分式的基本性质,把一个分式 的分子与分母的公因式约去,叫做分式的约分. 知识要点 约分的定义 分式的约分,一般要约去分子和分母所有的 公因式,使所得的结果成为最简分式或整式. 经过约分后的分式 ,其分子与分母没有 公因式.像这样分子与分母没有公因式的式子,叫 做最简分式. 2 x y x 在化简分式 时,小颖和小明的做法 出现了分歧: 小颖: 小明: 2 5 20 xy x y 2 2 5 5 20 20 xy x x y x 2 5 5 1 20 4 5 4 xy xy x y x xy x 你对他们俩的解法有何看法?说说看! •一般约分要彻底, 使分子、分母没有公因式. 议一议 例4 约分: (1) ; (2) . 2 2 -2 -4 4 a a a a 分析:约分的前提是要先找出分子与分母的公因式. 解:(1) 3 2 24 4 ab ab (2) 2 2 -2 -4 4 a a a a · 2 2 4 6 4 ab b ab 6 ; b 2 ( -2) ( -2) a a a .-2 a a 先分解因式,找 出分子与分母的公因 式,再约分. 2 3 2 251 15 a bc ab c () ; 约分: 练一练 解: 2 3 2 2 2 25 5 5 51 5 3 315 a bc abc ac ac abc b bab c () ; 2 2 92 6 9 x x x ( ) . 2 2 2 9 3 3 32 36 9 3 x x x x xx x x ( )( () ( ) ) . 知识要点 约分的基本步骤 (1)若分子﹑分母都是单项式,则约去系数的最 大公约数,并约去相同字母的最低次幂; (2)若分子﹑分母含有多项式,则先将多项式分 解因式,然后约去分子﹑分母所有的公因式. 注意事项: (1)约分前后分式的值要相等. (2)约分的关键是确定分式的分子和分母的公因式. (3)约分是对分子、分母的整体进行的,也就是分 子的整体和分母的整体都除以同一个因式. 例5 先约分,再求值: , 其中x = 5, y= 3. 2 2 2 2 2x x y + y x y - - 2 2 2 2 -2: - x xy y x y 解 当x=5, y=3时, 2( - ) ( )( - ) x y x y x y - . x y x y -x y x y 5 3 2 1 . 5 3 8 4 【方法总结】约分一般是将一个分式化成最简分式. 约分可以使求分式的值比较简便. 当堂练习 2.下列各式中是最简分式的( ) 2 2 2 2 2 4A. B. C. D. 2 a b x y x x y b a x y x x y B 1.下列各式成立的是( ) A. c c b a a b B. c c a b a b C. c c b a a b D. c c b a a b D 3.若把分式 A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍 y x y 的 x 和y 都扩大两倍,则分式 的值( )B 4.若把分式 中的 和 都扩大3倍,那么分式 的值( ) xy x y x y A.扩大3倍 B.扩大9倍 C.扩大4倍 D.不变 解: 2 21 bc b ac a () ; 22 x y y x y xyxy ( ) ( ) ; 2 2 2 2 2 2 21 2 3 4 2 1 bc x y y x xy m m ac xy x xy y m ( ) () ;() ;( ) ;( ) . 5.约分 2 2 2 23 2 x xy x x y x x yx xy y x y ( ) () ; ( ) 2 2 14 11 1 1 m m m m m mm m m ( ) ( ) ( )( ) . 6. 先约分,再求值: ,其中x=2,y= 3. 2 2-2 - x xy y y x 2 2 22 ( ): x - x y y y - x y - x ,y - x y - x 解 当x=2, y=3时, y-x = 3-2 =1. 课堂小结 分式的基 本性质 分式的约 分求值 先分解因式,找出分子与分 母的公因式,再约分. · · ( 0 ) f f h hg g h查看更多