- 2021-10-27 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下数学课件八年级下册数学课件《三角形中的角平分线》 北师大版 (10)_北师大版
第一章 三角形的证明 4 角平分线(2) 学习目标 1.能够证明三角形的三条角平分线交于一点且这一点 到三条边的距离相等; 2.角平分线的性质定理和判定定理的灵活运用. 1.角平分线的性质定理 定理:角平分线上的点到这个角的两边距离相等. 这个结论是经常用来证明两条线段相等的根据之一. 如图, ∵OC是∠AOB的平分线,P是OC上任意一点, PD⊥OA,PE⊥OB,垂足分别是D,E(已知) ∴PD=PE(角平分线上的点到这个角的两边距离相等) C B 1 A 2 P D E O 2.角平分线的判定定理 定理:在一个角的内部, 且到角的两边距离相等的点在这个角的平 分线上. 如图,∵ PD=PE, PD⊥OA, PE⊥OB, 垂足分别是D, E(已知), ∴点P在∠AOB的平分线上. (在一个角的内部,且到角的两边距离相等的点在这个角的平分线上). 这个结论又是经常用来证明点在直线上(或直线经过某一点)的根据之一. C B 1 A 2 P D E O 准备一个三角形纸片通过折叠找出每个角的平分线. 观察这三条角平分线, 你发现了什么? 结论: 三角形三个角的平分线相交于一点. 你想证明这个命题吗? 你能证明这个命题吗? 利用尺规作出三角形三个角的角平分线. 观察这三条角平分线, 你发现了什么? 结论: 三角形三个角的角平分线相交于一点. 你想证明这个命题吗? 你能证明这个命题吗? 思 考 分 析 命题: 三角形三个角的平分线相交于一点. 基本思路: 我们知道, 两条直线相交只有一个交点. 要想证明三条直 线相交于一点, 只要能证明两条直线的交点在第三条直线上即可.这 时可以考虑前面刚刚学到的逆定理. 如何证三条直线交于一点? A B C P MN D E F 如图,设△ABC的角平分线BM,CN相交于点P,过点P分别作BC,AC, AB的垂线,垂足分别E,F,D. ∵BM是△ABC的角平分线,点P在BM上 ∴PD=PE (角平分线上的点到这个角的两边距离相等). 同理, PE=PF. ∴点P在∠BAC的平分线上 (在一个角的内部,且到角两边距离相等 的点,在这个角的平分线上),并且PD=PE=PF. ∴△ABC的三条角平分线相交于一点P,并且P点到三条边 的距离相等. 定理: 三角形的三条角平分线相交于一点,并且这一点到三 边的距离相等. 如图, 在△ABC中, ∵BM,CN,AH分别是△ABC的三条角 平分且PD⊥AB,PE⊥BC,PF⊥AC. ∴BM,CN,AH相交于一点P,且PD=PE=PF. (三角形的三条角平分线相交于一点,并且这一点到三边 的距离相等). A B C P MN D E F 例3 如图, 在△ABC中,已知 AC=BC,∠C=90°, AD是△ABC的角 平线, DE⊥AB, 垂足为E. (1)如果CD=4cm, 求AC的长; (2)求证:AB=AC+CD. E D A BC 解:(1)∵ AD是△ABC的角平线, DE⊥AB, DC⊥AC, ∴DE=CD=4cm ∵AC=BC∴ ∠B=∠BAC(等边对等角) ∵ ∠C=90°∴ ∠B= 45° ∴ ∠BDE= 90°- 45°= 45°∴BE=DE 在等腰直角三角形BDE中, ( 4 4 2 )A C B C C D B D cm 22 2 4 2BD DE cm E D A BC E D A BC 解:(2)证明:由(1)的求解过程可知, Rt△ACD≌ Rt△AED(HL) ∴ AC=AE. ∵ BE=DE=CD, ∴ AB=AE+BE=AC+CD 1. 如图:直线L1、L2、L3表示三条相互交叉的公路,现要建一个 货物中转站,要求它到三条公路的距离相等,则可选择的地址有几 处? 满足条件共4个 l3 l2 1l C B A 2. 已知: 如图, ∠C=90°,∠B=30 °,AD是Rt△ABC的角平分线. 求证: BD=2CD. A B CD 证明:∵ ∠C=90°, ∠B= 30° ∴Rt△ABC中,AB=2BC, ∠BAC= 60° ∵ AD是△ABC的角平分线 ∴ ∠BAD= ∠DAC= 30°, AD=BD ∴ Rt△ACD中,AD=2CD ∴ BD=2CD 3. 已知: 如图, △ABC的外角∠CBD和∠BCE的角平分线 相交于点F.求证: 点F在∠DAE的平分线上. A B C FD E 证明:∵ BF是∠CBD的角平分线 ∴ F到BC,AD的距离相等 ∵ CF是∠BCE的角平分线 ∴ F到BC,AE的距离相等 ∴ F到AD,AE的距离相等 从而点F在∠DAE的平分线上. 证明:(1) ∵P是∠AOB平分线上的一个点, PC⊥OA, PD⊥OB ∴PC=PD 在 Rt△POC和 Rt△POD,OP=OP ∴ Rt△POC ≌ Rt△POD ∴OC=OD 4. 已知: 如图, P是∠AOB平分线上的一个点,并且PC⊥OA,PD⊥OB, 垂足分别是C, D.求证: (1)OC=OD; B A P D C O 4. 已知: 如图, P是∠AOB平分线上的一个点,并且PC⊥OA,PD⊥OB, 垂足分别是C, D.求证: (2)OP是CD的垂直平分线. B A P D C O 证明:(2) 由PC=PD得P在CD的垂直平分线上 由OC=OD得O在CD的垂直平分线上 ∴OP是CD的垂直平分线. 定理: 三角形的三条角平分线相交于一点,并且这一点到三边的距离 相等. 如图, 在△ABC中, ∵BM,CN,AH分别是△ABC的三条角平分线且 PD⊥AB,PE⊥BC,PF⊥AC ∴BM,CN,AH相交于一点P,且PD=PE=PF (三角形的三条角平分线相交于一点,并且这一点到三边的距离相 等). 比较三角形三边的垂直平分线和三条角平分线的性质定理 三边垂直平分线 三条角平分线 三角形 锐角三角形 交于三角形内一点 交于三角形内一 点钝角三角形 交于三角形外一点 直角三角形 交于斜边的中点 交点性质 到三角形三个顶点的 距离相等 到三角形三边的 距离相等 习题1.10,第4题.作 业:查看更多