- 2022-04-01 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级上数学课件八年级上册数学课件《因式分解》 人教新课标 (13)_人教新课标
15.4因式分解 复习与回顾:整式的乘法计算下列各式:x(x+1)=;(x+1)(x-1)=.x2+xx2-115.4.1提公因式法 在小学我们知道,要解决这个问题,需要把630分解成质数乘积的形式.类似地,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.讨论630能被哪些数整除? 观察、探究与归纳请把下列多项式写成整式乘积的形式.把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式因式分解(或分解因式). 想一想:因式分解与整式乘法有何关系?因式分解与整式乘法是互逆过程.(x+y)(x-y)x2-y2因式分解整式乘法类比与比较 练习一理解概念判断下列各式哪些是整式乘法?哪些是因式分解?(1)x2-4y2=(x+2y)(x-2y);(2)2x(x-3y)=2x2-6xy(3)(5a-1)2=25a2-10a+1;(4)x2+4x+4=(x+2)2;(5)(a-3)(a+3)=a2-9(6)m2-4=(m+2)(m-2);(7)2πR+2πr=2π(R+r).因式分解整式乘法整式乘法因式分解整式乘法因式分解因式分解 公因式:多项式中各项都有的因式,叫做这个多项式的公因式;把多项式ma+mb+mc分解成m(a+b+c)的形式,其中m是各项的公因式,另一个因式(a+b+c)是ma+mb+mc除以m的商,像这种分解因式的方法,叫做提公因式法.探究怎样分解因式:. 注意:各项系数都是整数时,因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.说出下列多项式各项的公因式:(1)ma+mb;(2)4kx-8ky;(3)5y3+20y2;(4)a2b-2ab2+ab.m4k5y2ab 分析:应先找出与的公因式,再提公因式进行分解.例1 分析:(b+c)是这两个式子的公因式,可以直接提出.例2分解因式. 随堂测验因式分解:24x3y-18x2y;7ma+14ma2;(3)-16x4+32x3-56x2;(4)-7ab-14abx+49aby;(5)2a(y-z)-3b(y-z);(6)p(a2+b2)-q(a2+b2). 拓展与提高1.20042+2004能被2005整除吗? 思考你能将多项式x2-16与多项式m2-4n2分解因式吗?这两个多项式有什么共同的特点吗?(a+b)(a-b)=a2-b2a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积.15.4.2公式法(1) 例3分解因式:(1)4x2–9;(2)(x+p)2–(x+q)2.分析:在(1)中,4x2=(2x)2,9=32,4x2-9=(2x)2–32,即可用平方差公式分解因式.在(2)中,把(x+p)和(x+q)各看成一个整体,设x+p=m,x+q=n,则原式化为m2-n2.4x2–9=(2x)2–32=(2x+3)(2x–3).(x+p)2–(x+q)2=[(x+p)+(x+q)][(x+p)–(x+q)]=(2x+p+q)(p–q). 例4分解因式:(1)x4—y4;(2)a3b—ab.分析:(1)x4-y4写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.(2)a3b-ab有公因式ab,应先提出公因式,再进一步分解.解:(1)x4-y4=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).分解因式必须进行到每一个多项式都不能再分解为止. 练习1.下列多项式能否用平方差公式来分解因式?为什么?(1)x2+y2;(2)x2-y2;(3)-x2+y2;(4)-x2-y2.2.分解因式:(1)a2-b2;(2)9a2-4b2;(3)x2y-4y;(4)-a4+16. 思维延伸1.观察下列各式:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;……把你发现的规律用含n的等式表示出来.2.对于任意的自然数n,(n+7)2-(n-5)2能被24整除吗?为什么? 思考:你能将多项式a2+2ab+b2与a2-2ab+b2分解因式吗?这两个多项式有什么特点?(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)215.4.2公式法(2) ·例5分解因式:(1)16x2+24x+9;(2)–x2+4xy–4y2.分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.+ 解:(2)-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2.例5分解因式:(1)16x2+24x+9;(2)–x2+4xy–4y2. 例6分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.将a+b看作一个整体,设a+b=m,则原式化为完全平方式m2-12m+36. 练习1.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2. 应用提高、拓展创新1.把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1);(2);(3);(4)(5).归纳:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到不能分解为止. 2.证明:连续两个奇数的平方差可以被8整除. 今天你有什么收获?你还有什么疑问吗?小结作业:习题15.4,2、3、5.查看更多