- 2022-04-01 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级上数学课件《勾股定理的简单应用》 (18)_苏科版
八年级(上册)初中数学3.3勾股定理的简单应用 把勾股定理送到外星球,与外星人进行数学交流!——华罗庚 交流从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形.3.3勾股定理的简单应用 思考已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长.3.3勾股定理的简单应用ABCEFGD 例1九章算术中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?3.3勾股定理的简单应用 解:如图,我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB来表示竹梢触地处离竹根的距离.设OA=x,则AB=10-x.∵∠AOB=90°,∴OA2+OB2=AB2,∴x2+32=(10-x)2.AOBX(10-X)33.3勾股定理的简单应用. 练习“引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少?3.3勾股定理的简单应用 解:如图,BC为芦苇长,AB为水深,AC为池中心点距岸边的距离.设AB=x尺,则BC=(x+1)尺,根据勾股定理得:x2+52=(x+1)2,即:(x+1)2-x2=52,解得:x=12,所以芦苇长为12+1=13(尺),答:水深为12尺,芦苇长为13尺.ACB3.3勾股定理的简单应用 例2如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.解:∵AD是BC边上的中线,∴AD2+BD2=AB2,∴∠ADB=90°,AD垂直平分BC.∴AC=AB=26.DCBA3.3勾股定理的简单应用∴BD=CD=BC=×20=10.∵AD2+BD2=576+100=676,AB2=262=676, 议一议勾股定理与它的逆定理在应用上有什么区别?勾股定理主要应用于求线段的长度、图形的周长、面积;勾股定理的逆定理用于判断三角形的形状.3.3勾股定理的简单应用 1.如图,在△ABC中,AB=AC=17,BC=16,求△ABC的面积.练一练DCBA3.3勾股定理的简单应用 2.如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13,求△ABC的周长和面积.DCBA3.3勾股定理的简单应用 试一试如图,以△ABC的三边为直径向外作半圆,且S1+S3=S2,试判断△ABC的形状?3.3勾股定理的简单应用查看更多