- 2021-10-25 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018_2019学年七年级数学下册第二章相交线与平行线2探索直线平行的条件教学课件(新版)北师大版
教学课件 数学 七年级下册 北师大版 第二章 相交线与平行线 2 探索直线平行的条件(第1课时) 1.会识别由“三线八角”构成的同位角. 2.能利用同位角相等判定两直线平行,并能解决一些问题. 3.会利用三角尺过已知直线外一点画这条直线的平行线. 观察下面两幅图中的直线a,b,它们分别平行吗?你如何 判别呢? 1.如图,已知∠1=∠2,问再添加什么条件可使AB∥CD?试 说明理由. 解:添加EB⊥MN,DF⊥MN,则AB∥CD. 理由如下: 因为EB⊥MN,DF⊥MN,∠1=∠2, 所以∠ABM=∠CDM(等角的余角相等). 所以AB∥CD(同位角相等,两直线平行). 解:AE∥CF成立.理由如下: 因为AE,CF分别是∠DAB和∠BCD的平分线, 所以∠1=1/2∠DAB,∠FCB=1/2∠BCD(角平分 线的定义). 因为∠DAB=∠BCD, 所以∠1=∠FCB. 因为∠2=∠FCB(已知),所以∠1=∠2(等量代换). 所以AE∥CF. 2.如图,已知AE,CF分别是∠DAB和∠BCD的平分线 ,∠2=∠FCB,∠DAB=∠BCD,则AE∥CF吗?为什么? 1.同位角是“两条直线被第三条直线所截”得到的, 找准同位角的关键是排除各种干扰,正确找出截线 和被截直线. 2.在运用“同位角相等,两直线平行”判定两条直线 的位置关系时,也应先找准截线和被截直线,其中两 条被截直线就是要判定是否平行的直线. 第二章 相交线与平行线 2 探索直线平行的条件 第2课时 1.会识别由“三线八角”构成的内错角和同旁内角. 2.能利用内错角相等和同旁内角互补判定两直线平行,并能 解决一些问题. 通过上节课的学习,小敏想出了过已知直线外一点画这 条直线的平行线的新方法,她是通过折一张半透明的纸得 到的(如图中的①~④,虚线部分表示折痕):从图中可知,小 敏画平行线的依据有哪些? 1.解决“问题导引”中的问题. 小敏画平行线的依据有:同位角相等,两直线平行;内错 角相等,两直线平行;同旁内角互补,两直线平行. 解:EB∥CF.理由如下: 因为AB⊥BC于点B,BC⊥CD于点C, 所以∠ABC=∠BCD=90°. 因为∠1=∠2, 所以∠3=∠4(等角的余角相等). 所以EB∥CF(内错角相等,两直线平行). 2.如图,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,那么 EB∥CF吗?为什么?查看更多