- 2021-10-22 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师大版数学七年级上册《应用一元一次方程—追赶小明》课时练习
5.6 应用一元一次方程——追赶小明 1.小偷偷走李力的钱包后以 6 米/秒的速度逃跑,李力发现时,小偷已逃到 24 米外,他 立即以 8 米/秒的速度追赶,经过( )秒后,他能追上小偷.( ) A.4 B.6 C.12 D.24 2.小明和小刚从相距 25.2 km 的两地相向而行,小明每小时走 4 km,3 h 后两人相遇; 设小刚的速度为 x km/h,列方程得( ) A.4+3x=25.2 B.3×4+x=25.2 C.3(4+x)=25.2 D.3(x-4)=25.2 3.甲、乙两人在操场上练习竞走,已知操场一周为 400 m,甲走 100 m/min,乙走 80 m/min, 现在两人同时、同地、同向出发 x min 后第一次相遇,则下列方程中错误的是( ) A.(100-80)x=400 B.100x=400+80x C.x 4 -x 5 =1 D.100x+400=80x 4.甲、乙两人从同一地点出发去某地,若甲先走 2 h,乙从后面追赶,则当乙追上甲 时,下列说法正确的是( ) A.甲、乙两人所走的路程相等 B.乙比甲多走 2 h C.乙走的路程比甲多 D.以上答案均不对 5.甲、乙两人从相距 120 千米的 A,B 两地同时出发,相向而行,甲骑车每小时 18 千 米,乙步行,经 5 小时后两人相遇,求乙的速度是多少? (1)本题用来建立方程的相等关系是__________________; (2)设乙的速度为 x 千米/时,根据题意填写下表: s v t s 甲 乙 x 方程 6.某行军纵队以 7 千米/时的速度行进,队尾的通讯员以 11 千米/时的速度赶到队伍前 送一封信,送到后又立即返回队尾,共用 13.2 分钟,求这支队伍的长度. 7.甲、乙两人在 300 米环形跑道上练习长跑,甲的速度是 6 米/秒,乙的速度是 7 米/ 秒. (1)如果甲、乙两人同地背向跑,乙先跑 2 秒,再经过多少秒两人相遇? (2)如果甲、乙两人同时同地同向跑,乙跑几圈后能首次追上甲? (3)如果甲、乙两人同时同向跑,乙在甲前面 6 米,经过多少秒后两人第二次相遇? (2013·嘉兴模拟)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾 轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了 4.5 小时;返回时平均速度提高了 10 千米/时,比去时少用了半小时回到舟山. 求舟山与嘉兴两地间的高速公路路程. 课后作业 1.C 设经过 x 秒后,能追上小偷 6x=8x-24,x=12. 2.C 考查相遇问题的列法 3.D 同向而行,则第一次相遇也就是甲所走的路程比乙的路程多一圈 4.A 乙追上甲时,甲所走的路程与乙所走的路程相等 5.(1)甲、乙两人所走路程和等于全程 (2)18 5 90 5 30 5(18+x)=120 6.解:设这支队伍的长度为 x 千米,根据题意,得 x 11-7 + x 11+7 =13.2 60 ,解得 x=0.72. 0.72 千米=720 米. 答:这支队伍的长度为 720 米. 7.解:(1)设再经过 x 秒甲、乙两人相遇,则 7×2+7x+6x=300,解得 x=22.所以经 过 22 秒甲、乙两人相遇; (2)设经过 y 秒后乙能追上甲,则 7y-6y=300,解得 y=300.所以,乙跑一圈需300 7 秒, 乙跑了 300÷300 7 =7(圈).所以乙跑 7 圈后首次追上甲; (3)设经过 t 秒后两人第二次相遇,依题意得 7t=6t+(300×2-6),解得 t=594.所以 经过 594 秒后两人第二次相遇. 中考链接 解:设舟山与嘉兴两地间的高速公路路程为 s 千米,由题意得s 4 - s 4.5 =10,解得 s=360. 答:舟山与嘉兴两地间的高速公路路程为 360 千米.查看更多