- 2022-03-31 发布 |
- 37.5 KB |
- 36页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学人教版课件8-3 实际问题与二元一次方程组(第1课时)
8.3实际问题与二元一次方程组(第1课时)人教版数学七年级下册 悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?导入新知 1.能够根据具体的数量关系,列出二元一次方程组解决简单的实际问题.2.学会利用二元一次方程组解决几何、行程问题.素养目标3.经历用方程组解决实际图形问题的过程,体会方程组是刻画现实世界的有效数学模型. 养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940kg.饲养员李大叔估计每只大牛1天约需饲料18到20kg,每只小牛1天约需饲料7到8kg.你认为李大叔估计的准确吗?探究新知知识点1列二元一次方程组解答较简单问题 问题1题中有哪些未知量,你如何设未知数?未知量:每头大牛1天需用的饲料;每头小牛1天需用的饲料.问题2题中有哪些等量关系?(1)30只大牛和15只小牛一天需用饲料为675kg;(2)(30+12)只大牛和(15+5)只小牛一天需用饲料为940kg.设未知数:设每头大牛和每头小牛平均1天各需用饲料为xkg和ykg,探究新知 解:设每头大牛和小牛平均1天各需用饲料为xkg和ykg,根据等量关系,列方程组:答:每头大牛和每头小牛1天各需用饲料为20kg和5kg,饲养员李大叔估计每天大牛需用饲料18到20千克,每头小牛一天需用7到8千克与计算有一定的出入.+=675,+=940.30x15y42x20y解方程组,得:x=,y=.205探究新知 例医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙原料各多少克恰好满足病人的需要?素养考点1探究新知列二元一次方程组解答数量问题 解:设每餐甲、乙原料各x克,y克.则有下表:甲原料x克乙原料y克所配的营养品其中所含蛋白质其中所含铁质0.5xx0.7y0.4y3540探究新知 根据题意,得方程组化简,得①-②,得5y=150y=30把y=30代入①,得x=28答:每餐甲原料28克,乙原料30克恰好满足病人的需要.0.5x+0.7y=35,x+0.4y=40.5x+7y=350,①5x+2y=200.②探究新知 探究新知归纳总结用二元一次方程组解决实际问题的步骤:(1)审题:弄清题意和题目中的_________;(2)设元:用___________表示题目中的未知数;(3)列方程组:根据___个等量关系列出方程组;(4)解方程组:利用__________法或___________解出未知数的值;(5)检验并答:检验所求的解是否符合实际意义,然后作答.数量关系字母2代入消元加减消元法 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐?(2)若7个餐厅同时开放,请估计一下能否供应全校的5300名学生就餐?请说明理由.巩固练习 解:(1)设1个大餐厅和1个小餐厅分别可供x名,y名学生就餐,x+2y=1680,2x+y=2280.解得:x=960,y=360.(2)若7个餐厅同时开放,则有5×960+2×360=5520,答:(1)1个大餐厅和1个小餐厅分别可供960名,360名学生就餐.(2)若7个餐厅同时开放,可以供应全校的5300名学生就餐.5520>5300.依题意得巩固练习 据统计资料,甲、乙两种作物的单位面积产量的比1:2.现要把一块长200m、宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?请提取数学信息探究新知知识点2列二元一次方程组解答几何问题转换成数学语言:已知:长方形ABCD,AB=CD=200m,AD=BC=100m,长方形ABCD分割为两个小长方形,长方形1和长方形2分别种甲、乙作物,甲、乙单位面积产量的比是1:2.ADCB 这里研究的实际上是什么问题?把一个长方形分成两个小长方形有哪些分割方式?方法1竖着画,把长分成两段,则宽不变方法2横着画,把宽分成两段,则长不变长方形的面积分割我们可以画出示意图来帮助分析动手试着画一画探究新知目标:甲、乙两种作物的总产量的比是3:4问题分析 竖着画,把长分成两段,则宽不变ADCFBE1.大长方形的长=200m2.甲、乙两种作物总产量比=3:4等量关系式有几个?探究新知方法1 竖着画,把长分成两段,则宽不变ADCFBE1.大长方形的长=200m2.甲、乙两种作物总产量比=3:4设AE=xm,BE=ym.先求出两种作物的面积SAEFD=100xSEFCB=100y再写出两种作物的总产量甲:100x×1乙:100y×2则列方程为100x:200y=3:4总产量=?1:2xy200m100如何设未知数呢?则列方程为x+y=200单位面积产量×面积探究新知方法1 竖着画,把长分成两段,则宽不变ADCFBE根据题意列方程组为100x:200y=3:4.xy200m100mx+y=200,解得x=120,y=80.你觉得该如何答题比较完整呢?甲种作物乙种作物解:过点E作EF⊥AB,交CD于点F.设AE=xm,BE=ym.答:将这块土地分为长120m,宽100m和长100m,宽80m的两个小长方形分别种植甲、乙两种作物.探究新知方法1解法一 横着画,把宽分成两段,则长不变ADCBExyFx+y=100,乙种作物甲种作物解:过点E作EF⊥BC,交BC于点F.设DE=xm,AE=ym.200x:400y=3:4.200y200xx=60,y=40.解得根据题意列方程组为200m100m答:将这块土地分为长200m,宽60m和长200m,宽40m的两个小长方形分别种植甲、乙两种作物.探究新知方法2解法二 例某校现有校舍20000m2计划拆除部分旧校舍,改建新校舍,使校舍总面积增加30%.若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校舍?(单位为m2)解:设应拆除旧校舍xm2,建造新校舍ym2拆20000m2新建素养考点1探究新知列二元一次方程组解答几何问题由题意得:解得:答:应该拆除2000m2旧校舍,建造8000m2新校舍. 8块相同的小长方形地砖拼成一个大长方形,每块小长方形地砖的长和宽分别是多少?(单位:cm)60x+y=60,x=3y.解:设小长方形地砖的长为x,宽为y,由题意,得解此方程组得:x=45,y=15.答:小长方形地砖的长为45cm,宽为15cm.巩固练习 小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问小华家离学校多远?知识点3列二元一次方程组解答行程问题探究新知 分析:小华到学校的路分成两段,一段为平路,一段为下坡路.平路:60m/min下坡路:80m/min上坡路:40m/min走平路的时间+走下坡路的时间=________,走上坡路的时间+走平路的时间=_______.路程=平均速度×时间1015探究新知 方法一(直接设元法)平路时间坡路时间总时间上学放学解:设小华家到学校平路长xm,下坡路长ym.根据题意,可列方程组:解方程组,得所以小明家到学校的距离为700m.探究新知 方法二(间接设元法)平路距离坡路距离上学放学解:设小华下坡路所花时间为xmin,上坡路所花时间为ymin.根据题意,可列方程组:解方程组,得所以小明家到学校的距离为700m.故平路距离:60×(10-5)=300(m)坡路距离:80×5=400(m)探究新知 例张强与李毅二人分别从相距20千米的两地出发,相向而行.若张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米?探究新知素养考点1列二元一次方程组解答行程问题 2y千米张强2.5小时走的路程李毅2小时走的路程11千米0.5x千米2x千米(1)ABx千米y千米(2)AB解:设张强、李毅每小时各走x,y千米,由题意得答:张强、李毅每小时各走4,5千米.分析:如下图(1)、(2)所示探究新知 巴广高速公路在5月10日正式通车,从巴中到广元全长约126km,一辆小汽车、一辆货车同时从巴中、广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h、ykm/h,则下列方程组正确的是()巩固练习A.B.C.D.D 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为( )A.B.C.D.D连接中考 1.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()课堂检测基础巩固题B.C.D.D 2.一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛共10只,共有68条腿,若设蛐蛐有x只,蜘蛛有y只,则列出方程组为______________.x+y=106x+8y=68解析:根据蛐蛐和蜘蛛共10只,可得x+y=10;蛐蛐和蜘蛛共有68条腿,可得6x+8y=68.课堂检测 3.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7000元;若购进电脑机箱2台和液晶显示器5台,共需资金4120元.则每台电脑机箱和液晶显示器的进价各多少元?课堂检测解:设每台电脑机箱和液晶显示器的进价分别为x元和y元,答:每台电脑机箱和液晶显示器的进价分别是60元、800元.解得则 4.A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分.求飞机的平均速度与风速.课堂检测解:设飞机的平均速度为xkm/h,风速为ykm/h,根据题意可列方程组解得:x=420,y=60.答:飞机的平均速度为420km/h,风速为60km/h. 我国的长江由西至东奔腾不息,其中九江至南京约有450千米的路程,某船从九江出发9个小时就能到达南京;返回时则用多了1个小时.求此船在静水中的速度以及长江水的平均流速.解:设轮船在静水中的速度为x千米/时,长江水的平均流速为y千米/时.答:轮船在静水中的速度为47.5千米/时,长江水的平均流速为2.5千米/时.能力提升题课堂检测解得:即 甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用小时可追上甲,求两人的速度.拓广探索题课堂检测解:设甲的速度为x千米/时,乙的速度为y千米/时,则答:甲的速度为4千米/时,乙的速度为12千米/时.解得: 二元一次方程组的应用应用步骤简单实际问题行程问题路程=平均速度×时间审题:弄清题意和题目中的数量关系设元:用字母表示题目中的未知数列方程组:根据2个等量关系列出方程组检验作答解方程组:代入法;加减法.几何问题课堂小结 课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习查看更多