【数学】2020届一轮复习北师大版圆的方程作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习北师大版圆的方程作业

‎1.(2016课标Ⅱ,4,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(  )                     ‎ A.- B.- C. D.2‎ 答案 A ‎ ‎2.(2016北京,5,5分)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(  )‎ A.1 B.2 C. D.2‎ 答案 C ‎ ‎3.(2018天津,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为        . ‎ 答案 x2+y2-2x=0‎ ‎4.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为          . ‎ 答案 +y2=‎ ‎5.(2018课标全国Ⅱ理,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.‎ ‎(1)求l的方程;‎ ‎(2)求过点A,B且与C的准线相切的圆的方程.‎ 解析 (1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),‎ 设A(x1,y1),B(x2,y2).‎ 由得k2x2- (2k2+4)x+k2=0.‎ Δ=16k2+16>0,故x1+x2=.‎ 所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.‎ 由题设知=8,解得k=-1(舍去)或k=1,‎ 因此l的方程为y=x-1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.‎ 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.‎ 方法总结 有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.‎ C组 教师专用题组 考点 圆的方程 ‎1.(2015北京,2,5分)圆心为(1,1)且过原点的圆的方程是(  )                     ‎ A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1‎ C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2‎ 答案 D ‎ ‎2.(2014陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为        . ‎ 答案 x2+(y-1)2=1‎ ‎3.(2014山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为       . ‎ 答案 (x-2)2+(y-1)2=4‎ ‎4.(2014湖北,17,5分)已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则 ‎(1)b=    ; ‎ ‎(2)λ=    . ‎ 答案 (1)- (2)‎ ‎5.(2017课标全国Ⅲ理,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.‎ ‎(1)证明:坐标原点O在圆M上;‎ ‎(2)设圆M过点P(4,-2),求直线l与圆M的方程.‎ 解析 (1)设A(x1,y1),B(x2,y2),l:x=my+2.‎ 由可得y2-2my-4=0,则y1y2=-4.‎ 又x1=,x2=,故x1x2==4.‎ 因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.‎ 故坐标原点O在圆M上.‎ ‎(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.‎ 故圆心M的坐标为(m2+2,m),圆M的半径r=.‎ 由于圆M过点P(4,-2),‎ 因此 ·=0,‎ 故(x1-4)(x2-4)+(y1+2)(y2+2)=0,‎ 即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.‎ 由(1)可得y1y2=-4,x1x2=4.‎ 所以2m2-m-1=0,解得m=1或m=-.‎ 当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.‎ 当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为+=.‎ 解后反思 直线与圆锥曲线相交问题,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x1,y1)、(x2,y2)表示:(x-x1)(x-x2)+(y-y1)(y-y2)=0.‎ ‎6.(2016江苏,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).‎ ‎(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;‎ ‎(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;‎ ‎(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.‎ 解析 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.‎ ‎(1)由圆心N在直线x=6上,可设N(6,y0).‎ 因为圆N与x轴相切,与圆M外切,‎ 所以00)有公共点,则r的最小值为(  )‎ A.2 B.2 C.4 D.2‎ 答案 B ‎ ‎3.(2019届浙江高考模拟试卷(五),7)若圆x2+y2-4x-2y-1=0上存在两点关于直线ax+2by-2=0(a>0,b>0)对称,则+的最小值为(  )‎ A.+1 B.3+2‎ C.2 D.9‎ 答案 B ‎ ‎4.(2018浙江镇海中学阶段性测试,7)已知圆的方程为x2+y2-6x-8y=0,设该圆过点M(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )                     ‎ A.10 B.20 ‎ C.30 D.40‎ 答案 B ‎ ‎5.(2018浙江金华十校模拟(4月),6)已知椭圆+=1(a>b>0)经过圆x2+y2-4x-2y=0的圆心,则ab的取值范围是(  )‎ A. B.[4,+∞)‎ C. D.(0,4]‎ 答案 B ‎ ‎6.(2018浙江新高考调研卷五(绍兴一中),6)在平面直角坐标系xOy中,以(0,1)为圆心,且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是(  )‎ A.x2+(y-1)2=2 B.x2+(y-1)2=4‎ C.x2+(y-1)2=8 D.x2+(y-1)2=16 ‎ 答案 C ‎ 二、填空题(单空题4分,多空题6分,共18分)‎ ‎7.(2019届浙江“七彩阳光”联盟期初联考,11)公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆.在平面直角坐标系中,若A(-2,0),B(2,0),则满足|PA|=2|PB|的点P的轨迹的圆心为     ,面积为    . ‎ 答案 ;π ‎8.(2018浙江镇海中学阶段性测试,15)已知圆C经过A(3,2),B(4,1)两点,且圆心在直线2x+y-4=0上,则圆C的方程是        . ‎ 答案 (x-2)2+y2=5‎ ‎9.(2018浙江9+1高中联盟期中,16)已知圆C:x2+(y-r)2=r2(r>0),点A(1,0),若在圆C上存在点Q,使得∠CAQ=60°,则r的取值范围是    . ‎ 答案 [,+∞)‎ ‎10.(2018浙江镇海中学期中,16)已知圆x2+y2=1上任意一点P,过点P作两直线分别交圆于A,B两点,且∠APB=60°,则|PA|2+|PB|2的取值范围为    . ‎ 答案 (3,6]‎
查看更多

相关文章

您可能关注的文档