2011年高考数学人教版福建卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2011年高考数学人教版福建卷

‎2011年数学人教版福建卷 一、选择题 ‎1、(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于 A.2 B.‎3 ‎ C.6 D.9 ‎ ‎2、(福建理1)i是虚数单位,若集合S=,则 ‎ A. B. ‎ C. D.‎ ‎3、(广东理4)设函数和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是 ‎ A.+|g(x)|是偶函数 B.-|g(x)|是奇函数 C.|| +g(x)是偶函数 D.||- g(x)是奇函数 ‎4、(福建文8)已知函数f(x)=,若f(a)+f(1)=0,则实数a的值等于 ‎ A.-3 B.-‎1 C.1 D.3‎ ‎5、(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是 A.(-1,1) B.(-2,2)‎ C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)‎ ‎6、(福建理10)已知函数,对于曲线上横坐标成等差数列的三个点A,B,C,给出以下判断: ‎ ‎ ①△ABC一定是钝角三角形 ‎ ②△ABC可能是直角三角形 ‎ ③△ABC可能是等腰三角形 ‎ ④△ABC不可能是等腰三角形 ‎ 其中,正确的判断是 ‎ A.①③ B.①④ C.②③ D.②④‎ ‎7、(福建理9)对于函数 (其中,),选取的一组值计算 和,所得出的正确结果一定不可能是 ‎ ‎ A.4和6 B.3和‎1 C.2和4 D.1和2‎ ‎8、(福建理5)等于 ‎ ‎ A.1 B. C. D.‎ ‎9、(福建理2)若aR,则a=2是(a-1)(a-2)=0的 ‎ A.充分而不必要条件 B.必要而不充分条件 ‎ C.充要条件 C.既不充分又不必要条件 二、解答题 ‎10、(福建文22)已知a、b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2,‎ ‎(e=2.71828…是自然对数的底数)。‎ ‎(Ⅰ)求实数b的值;‎ ‎(Ⅱ)求函数f(x)的单调区间;‎ ‎(Ⅲ)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。‎ ‎11、(福建理18)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品‎11千克.‎ ‎ (Ⅰ) 求的值;‎ ‎(Ⅱ) 若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.‎ 三、选择题 ‎12、福建理7.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 ‎ A. B.或‎2 ‎ C.2 D.‎ ‎13、福建文11.设圆锥曲线的两个焦点分别为F1、F2,若曲线上存在点P满足|PF1|:|F‎1F2|:|PF2|=4:3:2,则曲线的离心率等于 ‎ A. 或 B.或‎2 C.或2 D.或 四、解答题 ‎14、(本小题满分12分)‎ 如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。‎ ‎(Ⅰ)求实数b的值;‎ ‎(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程。‎ ‎15、(本小题满分13分)‎ 已知直线l:y=x+m,m∈R。‎ ‎(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;‎ ‎(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。‎ ‎16、(2)(本小题满分7分)选修4-4:坐标系与参数方程 在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 ‎.‎ ‎(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;‎ ‎(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.‎ ‎(2)选修4—4:坐标系与参数方程 本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。‎ 五、选择题 ‎17、(福建理7)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 ‎ A. B.或‎2 ‎ C.2 D.‎ 六、填空题 ‎18、(福建理12)三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于______。‎ 七、解答题 ‎19、(福建理17)已知直线l:y=x+m,m∈R。‎ ‎(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;‎ ‎(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。‎ ‎20、(福建理20) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,.‎ ‎(I)求证:平面PAB⊥平面PAD;‎ ‎(II)设AB=AP.‎ ‎ (i)若直线PB与平面PCD所成的角为,求线段AB的长;‎ ‎(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理 八、选择题 ‎21、阅读右图所示的程序框图,运行相应的程序,输出的结果是 ‎ A.3 B.11 ‎ ‎ C.38 D.123‎ 九、填空题 ‎22、(福建理11)运行如图所示的程序,输出的结果是_______。‎ 十、选择题 ‎23、福建文4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 ‎ A.6 B.‎8 ‎ C.10 D.12‎ ‎24、福建文7.如图,矩形ABCD中,点E为边CD的重点,若在矩形ABCD内部随 机取一个点Q,则点Q取自△ABE内部的概率等于 ‎ ‎ A. B. ‎ ‎ C. D. ‎ 十一、解答题 ‎25、福建文19.(本小题满分12分)‎ 某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:‎ X ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ f a ‎0.2‎ ‎0.45‎ b C ‎ (I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;‎ ‎(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。‎ 十二、选择题 ‎26、(福建理4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于 ‎ A. B. ‎ ‎ C. D.‎ ‎27、福建理6.(1+2x)3的展开式中,x2的系数等于 ‎ ‎ A.80 B.‎40 ‎ C.20 D.10‎ ‎28、福建文4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6‎ 名,则在高二年级的学生中应抽取的人数为 ‎ A.6 B.‎8 C.10 D.12‎ ‎29、如图,矩形ABCD中,点E为边CD的中点。若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于 A. B. C. D. 十三、填空题 ‎30、(福建理13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。‎ 若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。‎ ‎31、福建理13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。‎ ‎32、盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。‎ 十四、解答题 ‎33、(本小题满分13分)‎ 某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 ‎(I)已知甲厂产品的等级系数X1的概率分布列如下所示:‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.4‎ a b ‎0.1‎ 且X1的数字期望EX1=6,求a,b的值;‎ ‎(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:‎ ‎ 3 5 3 3 8 5 5 6 3 4‎ ‎ 6 3 4 7 5 3 4 8 5 3‎ ‎8 3 4 3 4 4 7 5 6 7‎ 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.‎ ‎ (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.‎ 注:(1)产品的“性价比”=;‎ ‎ (2)“性价比”大的产品更具可购买性.‎ ‎34、(福建理19)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 ‎(I)已知甲厂产品的等级系数X1的概率分布列如下所示:‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.4‎ a b ‎0.1‎ 且X1的数字期望EX1=6,求a,b的值;‎ ‎(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:‎ ‎ 3 5 3 3 8 5 5 6 3 4‎ ‎ 6 3 4 7 5 3 4 8 5 3‎ ‎8 3 4 3 4 4 7 5 6 7‎ 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.‎ ‎ (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.‎ 注:(1)产品的“性价比”=;‎ ‎ (2)“性价比”大的产品更具可购买性.‎ 解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。‎ ‎35、福建理19.(本小题满分13分)‎ 某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 ‎(I)已知甲厂产品的等级系数X1的概率分布列如下所示:‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.4‎ a b ‎0.1‎ 且X1的数字期望EX1=6,求a,b的值;‎ ‎(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:‎ ‎ 3 5 3 3 8 5 5 6 3 4‎ ‎ 6 3 4 7 5 3 4 8 5 3‎ ‎8 3 4 3 4 4 7 5 6 7‎ 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.‎ ‎ (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.‎ 注:(1)产品的“性价比”=;‎ ‎ (2)“性价比”大的产品更具可购买性.‎ 十五、选择题 ‎36、(福建理3)若tan=3,则的值等于 ‎ A.2 B.‎3 ‎ C.4 D.6‎ ‎37、(福建理8)已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域,上的一个动点,则·的取值范围是 ‎ A.[-1.0] B.[0.1] C.[0.2] D.[-1.2]‎ ‎38、(福建理10)已知函数f(x)=e+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:‎ ‎ ①△ABC一定是钝角三角形 ‎ ‎ ②△ABC可能是直角三角形 ‎ ③△ABC可能是等腰三角形 ‎ ‎ ④△ABC不可能是等腰三角形 ‎ 其中,正确的判断是 ‎ A.①③ B.①④ C. ②③ D.②④‎ ‎39、(福建理8)已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域,上的一个动点,则·的取值范围是 ‎ A.[-1.0] B.[0.1] C.[0.2] D.[-1.2]‎ ‎40、对于函数 (其中,),选取的一组值计算和,所得出的正确结果一定不可能是 ‎ ‎ A.4和6 B.3和‎1 C.2和4 D.1和2‎ ‎41、已知函数,对于曲线上横坐标成等差数列的三个点A,B,C,给出以下判断: ‎ ‎ ①△ABC一定是钝角三角形 ‎ ②△ABC可能是直角三角形 ‎ ③△ABC可能是等腰三角形 ‎ ④△ABC不可能是等腰三角形 ‎ 其中,正确的判断是 ‎ A.①③ B.①④ C.②③ D.②④‎ ‎42、若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于 A.2 B.‎3 ‎ C.6 D.9‎ ‎43、已知函数f(x)=,若f(a)+f(1)=0,则实数a的值等于 ‎ A.-3 B.-‎1 C.1 D.3‎ ‎44、等于 ‎ ‎ A.1 B. C. D.‎ ‎45、若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是 A.(-1,1) B.(-2,2)‎ C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)‎ ‎46、(福建理1)i是虚数单位,若集合S=,则 ‎ A. B. C. D.‎ ‎47、若,则“”是“”的 ‎ ‎ A.充分而不必要条件 B.必要而不充分条件 ‎ C.充要条件 C.既不充分又不必要条件 ‎48、是虚数单位,若集合,则 ‎ ‎ A. B. C. D.‎ ‎49、若a∈R,则“a=‎1”‎是“|a|=‎1”‎的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件 ‎50、I是虚数单位,1+i3等于 A.i B.-i C.1+i D.1-i ‎51、已知集合M={-1,0,1},N={0,1,2},则M∩N=‎ A. {0,1} B. {-1,0,1} C. {0,1,2} D. {-1,0,1,2}‎ ‎52、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4。给出如下四个结论:‎ ‎①2011∈[1];‎ ‎②-3∈[3];‎ ‎③Z=[0]∪[1]∪[2]∪[3]∪[4];‎ ‎④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]。‎ 其中,正确结论的个数是 A.1 B.‎2 ‎C.3 D.4‎ 以下是答案 一、选择题 ‎1、D ‎2、B ‎3、A ‎【解析】因为 g(x)是R上的奇函数,所以|g(x)|是R上的偶函数,从而+|g(x)|是偶函数,故选A.‎ ‎4、A ‎5、C ‎6、B ‎7、D ‎8、C ‎9、A 二、解答题 ‎10、解:(Ⅰ)b=2;(Ⅱ)a>0时单调递增区间是(1,+∞),单调递减区间是(0,1),a<0时单调递增区间是(0,1),单调递减区间是(1,+∞);(Ⅲ)存在m,M;m的最小值为1,M的最大值为2。‎ ‎11、解:(Ⅰ)因为时,所以;‎ ‎(Ⅱ)由(Ⅰ)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:‎ ‎;‎ ‎,令得 函数在上递增,在上递减,所以当时函数取得最大值 答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.‎ 三、选择题 ‎12、A ‎13、A ‎ 四、解答题 ‎14、本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,‎ 考查函数与方程思想、数形结合思想,满分12分。‎ 解:(I)由,(*)‎ 因为直线与抛物线C相切,所以解得b=-1。‎ ‎(II)由(I)可知,‎ 解得x=2,代入故点A(2,1),因为圆A与抛物线C的准线相切,‎ 所以圆A的半径r等于圆心A到抛物线的准线y=-1的距离,即 所以圆A的方程为 ‎15、本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。‎ 解法一:‎ ‎(I)依题意,点P的坐标为(0,m)‎ 因为,所以,‎ 解得m=2,即点P的坐标为(0,2)‎ 从而圆的半径 故所求圆的方程为 ‎(II)因为直线的方程为所以直线的方程为 由,‎ ‎(1)当时,直线与抛物线C相切 ‎(2)当,那时,直线与抛物线C不相切。‎ 综上,当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切。‎ 解法二:(I)设所求圆的半径为r,则圆的方程可设为 依题意,所求圆与直线相切于点P(0,m),‎ 则解得所以所求圆的方程为 ‎(II)同解法一。‎ ‎16、解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。‎ 因为点P的直角坐标(0,4)满足直线的方程,‎ 所以点P在直线上,‎ ‎(II)因为点Q在曲线C上,故可设点Q的坐标为,‎ 从而点Q到直线的距离为 ‎,‎ 由此得,当时,d取得最小值,且最小值为 五、选择题 ‎17、A 六、填空题 ‎18、 ‎ 七、解答题 ‎19、本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。‎ 解法一:‎ ‎(I)依题意,点P的坐标为(0,m)‎ 因为,所以,‎ 解得m=2,即点P的坐标为(0,2)‎ 从而圆的半径 故所求圆的方程为 ‎(II)因为直线的方程为 所以直线的方程为 由 ‎(1)当时,直线与抛物线C相切 ‎(2)当,那时,直线与抛物线C不相切。‎ 综上,当m=1时,直线与抛物线C相切;‎ 当时,直线与抛物线C不相切。‎ 解法二:‎ ‎(I)设所求圆的半径为r,则圆的方程可设为 依题意,所求圆与直线相切于点P(0,m),‎ 则 解得 所以所求圆的方程为 ‎(II)同解法一。‎ ‎20、由本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。‎ 解法一:‎ ‎(I)因为平面ABCD,‎ 平面ABCD,‎ 所以,‎ 又 所以平面PAD。‎ 又平面PAB,所以平面平面PAD。‎ ‎(II)以A为坐标原点,建立空间直角坐标系 A—xyz(如图)‎ 在平面ABCD内,作CE//AB交AD于点E,则 在中,DE=,‎ 设AB=AP=t,则B(t,0,0),P(0,0,t)‎ 由AB+AD=4,得AD=4-t,‎ 所以,‎ ‎(i)设平面PCD的法向量为,‎ 由,,得 取,得平面PCD的一个法向量,‎ 又,故由直线PB与平面PCD所成的角为,得 解得(舍去,因为AD),所以 ‎(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,‎ 设G(0,m,0)(其中)‎ 则,‎ 由得,(2)‎ 由(1)、(2)消去t,化简得(3)‎ 由于方程(3)没有实数根,所以在线段AD上不存在一个点G,‎ 使得点G到点P,C,D的距离都相等。‎ 从而,在线段AD上不存在一个点G,‎ 使得点G到点P,B,C,D的距离都相等。‎ 解法二:‎ ‎(I)同解法一。‎ ‎(II)(i)以A为坐标原点,建立空间直角坐标系A—xyz(如图)‎ 在平面ABCD内,作CE//AB交AD于E,‎ 则。‎ 在平面ABCD内,作CE//AB交AD于点E,则 在中,DE=,‎ 设AB=AP=t,则B(t,0,0),P(0,0,t)‎ 由AB+AD=4,得AD=4-t,‎ 所以,‎ 设平面PCD的法向量为,‎ 由,,得 取,得平面PCD的一个法向量,‎ 又,故由直线PB与平面PCD所成的角为,得 解得(舍去,因为AD),‎ 所以 ‎(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,‎ 由GC=CD,得,‎ 从而,即 设 ‎,‎ 在中,‎ 这与GB=GD矛盾。‎ 所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,‎ 从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。‎ 八、选择题 ‎21、B 九、填空题 ‎22、3‎ 十、选择题 ‎23、B ‎24、C 十一、解答题 ‎25、本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想,满分12分。‎ ‎ 解:(I)由频率分布表得,‎ 因为抽取的20件日用品中,等级系数为4的恰有3件,‎ 所以 等级系数为5的恰有2件,所以,‎ 从而 所以 ‎(II)从日用品中任取两件,‎ 所有可能的结果为:‎ ‎,‎ 设事件A表示“从日用品中任取两件,其等级系数相等”,则A包含的基本事件为:‎ 共4个,‎ 又基本事件的总数为10,‎ 故所求的概率 十二、选择题 ‎26、C ‎27、B ‎28、B ‎29、C 十三、填空题 ‎30、‎ ‎31、‎ ‎32、‎ 十四、解答题 ‎33、本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。‎ 解:(I)因为 又由X1的概率分布列得 由 ‎(II)由已知得,样本的频率分布表如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 所以 即乙厂产品的等级系数的数学期望等于4.8.‎ ‎(III)乙厂的产品更具可购买性,理由如下:‎ 因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为 因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为 据此,乙厂的产品更具可购买性。‎ ‎34、解:(I)因为 又由X1的概率分布列得 由 ‎(II)由已知得,样本的频率分布表如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 所以 即乙厂产品的等级系数的数学期望等于4.8.‎ ‎(III)乙厂的产品更具可购买性,理由如下:‎ 因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为 因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为 据此,乙厂的产品更具可购买性。‎ ‎35、本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。‎ 解:(I)因为 又由X1的概率分布列得 由 ‎(II)由已知得,样本的频率分布表如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ P ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.1‎ 所以 即乙厂产品的等级系数的数学期望等于4.8.‎ ‎(III)乙厂的产品更具可购买性,理由如下:‎ 因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为 因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为 据此,乙厂的产品更具可购买性。‎ 十五、选择题 ‎36、D ‎37、C ‎38、B ‎39、C ‎40、D ‎41、B ‎42、D ‎43、A ‎44、C ‎45、C ‎46、B ‎47、A ‎48、B ‎49、A ‎ ‎50、D ‎51、A ‎52、C
查看更多

相关文章

您可能关注的文档