【数学】2018届一轮复习人教A版高考中的导数应用问题教案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版高考中的导数应用问题教案

‎(浙江专用)2018版高考数学大一轮复习 高考专题突破一 高考中的导数应用问题教师用书 ‎1.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是(  )‎ A.(-∞,-2] B.(-∞,-1]‎ C.[2,+∞) D.[1,+∞)‎ 答案 D 解析 由于f′(x)=k-,f(x)=kx-ln x在区间(1,+∞)上单调递增⇔f′(x)=k-≥0在(1,+∞)上恒成立.‎ 由于k≥,而0<<1,所以k≥1.‎ 即k的取值范围为[1,+∞).‎ ‎2.(2016·浙江十校联考)已知函数f(x)=x3-ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为(  )‎ A.(1,+∞) B.(,+∞)‎ C.(2,+∞) D.(3,+∞)‎ 答案 D 解析 由题意知f′(x)=3x2-2ax=x(3x-2a),‎ 当a≤0时,不符合题意.‎ 当a>0时,f(x)在(0,)上单调递减,‎ 在(,+∞)上单调递增,‎ 所以由题意知f()<0,解得a>3,‎ 故选D.‎ ‎3.(2016·全国甲卷)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=________.‎ 答案 1-ln 2‎ 解析 y=ln x+2的切线为y=·x+ln x1+1(设切点横坐标为x1).‎ y=ln(x+1)的切线为y=x+ln(x2+1)-(设切点横坐标为x2),‎ ‎∴ 解得x1=,x2=-,∴b=ln x1+1=1-ln 2.‎ ‎4.设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是________.‎ 答案 [1,+∞)‎ 解析 因为对任意x1,x2∈(0,+∞),‎ 不等式≤恒成立,所以≥.‎ 因为g(x)=,‎ 所以g′(x)=e2-x(1-x).‎ 当00;当x>1时,g′(x)<0,‎ 所以g(x)在(0,1]上单调递增,在[1,+∞)上单调递减.‎ 所以当x=1时,g(x)取到最大值,即g(x)max=g(1)=e.‎ 又f(x)=e2x+≥2e(x>0).‎ 当且仅当e2x=,即x=时取等号,故f(x)min=2e.‎ 所以==,应有≥,‎ 又k>0,所以k≥1.‎ 题型一 利用导数研究函数性质 例1 (2015·课标全国Ⅱ)已知函数f(x)=ln x+a(1-x).‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.‎ 解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.‎ 若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.‎ 若a>0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0.所以f(x)在上单调递增,在上单调递减.‎ ‎(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;‎ 当a>0时,f(x)在x=取得最大值,最大值为f=ln+a=-ln a+a-1.‎ 因此f>2a-2等价于ln a+a-1<0.‎ 令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,‎ g(1)=0.‎ 于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.‎ 因此,a的取值范围是(0,1).‎ 思维升华 利用导数主要研究函数的单调性、极值、最值.已知f(x)的单调性,可转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析.‎ ‎ 已知a∈R,函数f(x)=(-x2+ax)ex (x∈R,e为自然对数的底数).‎ ‎(1)当a=2时,求函数f(x)的单调递增区间;‎ ‎(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.‎ 解 (1)当a=2时,f(x)=(-x2+2x)ex,‎ 所以f′(x)=(-2x+2)ex+(-x2+2x)ex ‎=(-x2+2)ex.‎ 令f′(x)>0,即(-x2+2)ex>0,因为ex>0,‎ 所以-x2+2>0,解得-0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,‎ 即a≥= ‎=(x+1)-对x∈(-1,1)都成立.‎ 令y=(x+1)-,则y′=1+>0.‎ 所以y=(x+1)-在(-1,1)上单调递增,‎ 所以y<(1+1)-=,即a≥.‎ 因此a的取值范围为a≥.‎ 题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f(x)=-kln x,k>0.‎ ‎(1)求f(x)的单调区间和极值;‎ ‎(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.‎ ‎(1)解 函数的定义域为(0,+∞).由f(x)=-kln x(k>0),得f′(x)=x-=.‎ 由f′(x)=0,解得x=(负值舍去).‎ f(x)与f′(x)在区间(0,+∞)上随x的变化情况如下表:‎ x ‎(0,)‎ ‎(,+∞)‎ f′(x)‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎ ↘‎ ↗‎ 所以,f(x)的单调递减区间是(0,),单调递增区间是(,+∞).‎ f(x)在x=处取得极小值f()=.‎ ‎(2)证明 由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.‎ 因为f(x)存在零点,所以≤0,从而k≥e,‎ 当k=e时,f(x)在区间(1,]上单调递减且f()=0,‎ 所以x=是f(x)在区间(1,]上的唯一零点.‎ 当k>e时,f(x)在区间(0,)上单调递减且f(1)=>0,f()=<0,‎ 所以f(x)在区间(1,]上仅有一个零点.‎ 综上可知,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.‎ 思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.‎ ‎ 已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.‎ ‎(1)求a;‎ ‎(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.‎ ‎(1)解 f′(x)=3x2-6x+a,f′(0)=a.‎ 曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.‎ 由题设得-=-2,所以a=1.‎ ‎(2)证明 由(1)知,f(x)=x3-3x2+x+2.‎ 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.‎ 由题设知1-k>0.‎ 当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,‎ g(-1)=k-1<0,g(0)=4,‎ 所以g(x)=0在(-∞,0]上有唯一实根.‎ 当x>0时,令h(x)=x3-3x2+4,‎ 则g(x)=h(x)+(1-k)x>h(x).‎ h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,‎ 所以g(x)>h(x)≥h(2)=0.‎ 所以g(x)=0在(0,+∞)上没有实根.‎ 综上,g(x)=0在R上有唯一实根,‎ 即曲线y=f(x)与直线y=kx-2只有一个交点.‎ 题型三 利用导数研究不等式问题 例3 已知f(x)=xln x,g(x)=-x2+ax-3.‎ ‎(1)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;‎ ‎(2)证明:对一切x∈(0,+∞),都有ln x>-成立.‎ ‎(1)解 对任意x∈(0,+∞),有 ‎2xln x≥-x2+ax-3,则a≤2ln x+x+,‎ 设h(x)=2ln x+x+(x>0),则h′(x)=,‎ 当x∈(0,1)时,h′(x)<0,h(x)单调递减,‎ 当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,‎ 所以h(x)min=h(1)=4.‎ 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,‎ 所以a≤h(x)min=4.‎ ‎(2)证明 问题等价于证明 xln x>-(x∈(0,+∞)).‎ f(x)=xln x(x∈(0,+∞))的最小值是-,‎ 当且仅当x=时取到,设m(x)=-(x∈(0,+∞)),则m′(x)=,易知m(x)max=m(1)=-,‎ 当且仅当x=1时取到.‎ 从而对一切x∈(0,+∞),都有ln x>-成立.‎ 思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解.‎ ‎ 已知函数f(x)=x3-2x2+x+a,g(x)=-2x+,若对任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是____________.‎ 答案 [-,-]‎ 解析 问题等价于f(x)的值域是g(x)的值域的子集,‎ 显然,g(x)单调递减,∴g(x)max=g(2)=,‎ g(x)min=g(4)=-;‎ 对于f(x),f′(x)=3x2-4x+1,‎ 令f′(x)=0,解得x=或x=1,‎ 当x变化时,f′(x),f(x)的变化情况列表如下:‎ x ‎-1‎ ‎(-1,)‎ ‎(,1)‎ ‎1‎ ‎(1,2)‎ ‎2‎ f′(x)‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎ a-4‎ ‎↗ +a ‎↘ a ‎↗ a+2‎ ‎∴f(x)max=a+2,f(x)min=a-4,‎ ‎∴∴a∈[-,-].‎ ‎1.已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.‎ ‎(1)求a的值;‎ ‎(2)求函数f(x)的单调区间.‎ 解 (1)对f(x)求导得f′(x)=--,‎ 由f(x)在点(1,f(1))处的切线垂直于直线y=x,知f′(1)=--a=-2,解得a=.‎ ‎(2)由(1)知f(x)=+-ln x-,‎ 则f′(x)=.‎ 令f′(x)=0,解得x=-1或x=5.‎ 因为x=-1不在f(x)的定义域(0,+∞)内,故舍去.‎ 当x∈(0,5)时,f′(x)<0,‎ 故f(x)在(0,5)内为减函数;‎ 当x∈(5,+∞)时,f′(x)>0,‎ 故f(x)在(5,+∞)内为增函数.‎ 综上,f(x)的单调增区间为(5,+∞),单调减区间为(0,5).‎ ‎2.已知函数f(x)=xln x,g(x)=(-x2+ax-3)ex(a为实数).‎ ‎(1)当a=5时,求函数y=g(x)在x=1处的切线方程;‎ ‎(2)求f(x)在区间[t,t+2](t>0)上的最小值.‎ 解 (1)当a=5时,g(x)=(-x2+5x-3)ex,g(1)=e.‎ 又g′(x)=(-x2+3x+2)ex,‎ 故切线的斜率为g′(1)=4e.‎ 所以切线方程为y-e=4e(x-1),‎ 即4ex-y-3e=0.‎ ‎(2)函数f(x)的定义域为(0,+∞),f′(x)=ln x+1,‎ 当x变化时,f′(x),f(x)的变化情况如下表:‎ x ‎(0,)‎ ‎(,+∞)‎ f′(x)‎ ‎-‎ ‎0‎ ‎+‎ f(x)‎ 单调递减 极小值 单调递增 ‎①当t≥时,在区间[t,t+2]上f(x)为增函数,‎ 所以f(x)min=f(t)=tln t.‎ ‎②当01时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,‎ f(0)=11时曲线y=f(x)与直线y=b有且仅有两个不同交点.‎ 综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,‎ 那么b的取值范围是(1,+∞).‎ ‎4.(2016·四川)设函数f(x)=ax2-a-ln x,其中a∈R.‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).‎ 解 (1)f′(x)=2ax-=(x>0).‎ 当a≤0时,f′(x)<0,f(x)在(0,+∞)内单调递减.‎ 当a>0时,由f′(x)=0,有x=.‎ 此时,当x∈时,f′(x)<0,f(x)单调递减;‎ 当x∈时,f′(x)>0,f(x)单调递增.‎ ‎(2)令g(x)=-,s(x)=ex-1-x.‎ 则s′(x)=ex-1-1.而当x>1时,s′(x)>0,‎ 所以s(x)在区间(1,+∞)内单调递增.‎ 又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.‎ 当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.‎ 故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.‎ 当01.‎ 由(1)有f0,‎ 所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.‎ 当a≥时,令h(x)=f(x)-g(x)(x≥1).‎ 当x>1时,h′(x)=2ax-+-e1-x>x-+-=>>0.‎ 因此,h(x)在区间(1,+∞)内单调递增.‎ 又因为h(1)=0,‎ 所以当x>1时,h(x)=f(x)-g(x)>0,‎ 即f(x)>g(x)恒成立.综上,a∈.‎ ‎5.(2016·杭州四校联考)已知函数f(x)=aln(x+1)+x2-x,其中a为非零实数.‎ ‎(1)讨论函数f(x)的单调性;‎ ‎(2)若y=f(x)有两个极值点x1,x2,且x1-1,‎ 当a-1≥0,即a≥1时,f′(x)≥0,‎ ‎∴f(x)在(-1,+∞)上单调递增,‎ 当0-1,x2=,‎ ‎∴f(x)在区间(-1,-)上单调递增,在(-,)上单调递减,在(,+∞)上单调递增.‎ 当a<0时,∵x1<-1,‎ ‎∴f(x)在(-1,)上单调递减,在(,+∞)上单调递增.‎ ‎(2)证明 ∵00‎ ‎⇔aln(x2+1)+x-x2>0‎ ‎⇔(1-x)ln(x2+1)+x-x2>0‎ ‎⇔-(x2-1)(1+x2)ln(x2+1)+x2(x2-1)>0‎ ‎⇔(1+x2)ln(x2+1)-x2>0,‎ 令g(x)=(1+x)ln(x+1)-x,x∈(0,1),‎ ‎∵g′(x)=ln(x+1)+>0,‎ ‎∴g(x)在(0,1)上单调递增,∴g(x)>g(0)=0.‎ 故原命题得证.‎
查看更多

相关文章

您可能关注的文档