- 2021-07-01 发布 |
- 37.5 KB |
- 29页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2015年全国统一高考数学试卷(理科)(新课标ⅱ)
2015年云南省高考数学试卷(理科)(全国新课标Ⅱ) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=( ) A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=( ) A.﹣1 B.0 C.1 D.2 3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关 4.(5分)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( ) A.21 B.42 C.63 D.84 5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=( ) A.3 B.6 C.9 D.12 6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A. B. C. D. 7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=( ) A.2 B.8 C.4 D.10 8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=( ) A.0 B.2 C.4 D.14 9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为( ) A.36π B.64π C.144π D.256π 10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( ) A. B. C. D. 11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为( ) A. B.2 C. D. 12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是( ) A.(﹣∞,﹣1)∪(0,1) B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞) 二、填空题(共4小题,每小题5分,满分20分) 13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ= . 14.(5分)若x,y满足约束条件,则z=x+y的最大值为 . 15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= . 16.(5分)设数列{an}的前n项和为Sn,且a1=﹣1,an+1=Sn+1Sn,则Sn= . 三、解答题(共5小题,满分60分) 17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求; (2)若AD=1,DC=,求BD和AC的长. 18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可); (2)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率. 19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF与平面α所成角的正弦值. 20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M. (1)证明:直线OM的斜率与l的斜率的乘积为定值; (2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 21.(12分)设函数f(x)=emx+x2﹣mx. (1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围. 四、选做题.选修4-1:几何证明选讲 22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点. (1)证明:EF∥BC; (2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积. 选修4-4:坐标系与参数方程 23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ. (1)求C2与C3交点的直角坐标; (2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值. 选修4-5:不等式选讲 24.设a,b,c,d均为正数,且a+b=c+d,证明: (1)若ab>cd,则+>+; (2)+>+是|a﹣b|<|c﹣d|的充要条件. 2015年云南省高考数学试卷(理科)(全国新课标Ⅱ) 参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)(2015•新课标Ⅱ)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=( ) A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2} 【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可. 【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2}; ∴A∩B={﹣1,0}. 故选:A. 2.(5分)(2015•新课标Ⅱ)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=( ) A.﹣1 B.0 C.1 D.2 【分析】首先将坐标展开,然后利用复数相等解之. 【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i, 4a=0,并且a2﹣4=﹣4, 所以a=0; 故选:B. 3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关 【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确; B从2007年开始二氧化硫排放量变少,故B正确; C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确; D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误. 【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确; B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确; C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确; D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误. 故选:D 4.(5分)(2015•新课标Ⅱ)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( ) A.21 B.42 C.63 D.84 【分析】由已知,a1=3,a1+a3+a5 =21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求. 【解答】解:∵a1=3,a1+a3+a5=21, ∴, ∴q4+q2+1=7, ∴q4+q2﹣6=0, ∴q2=2, ∴a3+a5+a7==3×(2+4+8)=42. 故选:B 5.(5分)(2015•新课标Ⅱ)设函数f(x)=,则f(﹣2)+f(log212)=( ) A.3 B.6 C.9 D.12 【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和. 【解答】解:函数f(x)=, 即有f(﹣2)=1+log2(2+2)=1+2=3, f(log212)==12×=6, 则有f(﹣2)+f(log212)=3+6=9. 故选C. 6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A. B. C. D. 【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可. 【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥, ∴正方体切掉部分的体积为×1×1×1=, ∴剩余部分体积为1﹣=, ∴截去部分体积与剩余部分体积的比值为. 故选:D. 7.(5分)(2015•新课标Ⅱ)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=( ) A.2 B.8 C.4 D.10 【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论. 【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则, ∴D=﹣2,E=4,F=﹣20, ∴x2+y2﹣2x+4y﹣20=0, 令x=0,可得y2+4y﹣20=0, ∴y=﹣2±2, ∴|MN|=4. 故选:C. 8.(5分)(2015•新课标Ⅱ)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=( ) A.0 B.2 C.4 D.14 【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论. 【解答】解:由a=14,b=18,a<b, 则b变为18﹣14=4, 由a>b,则a变为14﹣4=10, 由a>b,则a变为10﹣4=6, 由a>b,则a变为6﹣4=2, 由a<b,则b变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选:B. 9.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为( ) A.36π B.64π C.144π D.256π 【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积. 【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π, 故选C. 10.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( ) A. B. C. D. 【分析】根据函数图象关系,利用排除法进行求解即可. 【解答】解:当0≤x≤时,BP=tanx,AP==, 此时f(x)=+tanx,0≤x≤,此时单调递增, 当P在CD边上运动时,≤x≤且x≠时, 如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣, ∴OQ=﹣, ∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣, ∴PA+PB=, 当x=时,PA+PB=2, 当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx, 由对称性可知函数f(x)关于x=对称, 且f()>f(),且轨迹为非线型, 排除A,C,D, 故选:B. 11.(5分)(2015•新课标Ⅱ)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为( ) A. B.2 C. D. 【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值. 【解答】解:设M在双曲线﹣=1的左支上, 且MA=AB=2a,∠MAB=120°, 则M的坐标为(﹣2a,a), 代入双曲线方程可得, ﹣=1, 可得a=b, c==a, 即有e==. 故选:D. 12.(5分)(2015•新课标Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是( ) A.(﹣∞,﹣1)∪(0,1) B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞) 【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞ )上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可. 【解答】解:设g(x)=,则g(x)的导数为:g′(x)=, ∵当x>0时总有xf′(x)<f(x)成立, 即当x>0时,g′(x)恒小于0, ∴当x>0时,函数g(x)=为减函数, 又∵g(﹣x)====g(x), ∴函数g(x)为定义域上的偶函数 又∵g(﹣1)==0, ∴函数g(x)的图象性质类似如图: 数形结合可得,不等式f(x)>0⇔x•g(x)>0 ⇔或, ⇔0<x<1或x<﹣1. 故选:A. 二、填空题(共4小题,每小题5分,满分20分) 13.(5分)(2015•新课标Ⅱ)设向量,不平行,向量λ+与+2平行,则实数λ= . 【分析】利用向量平行即共线的条件,得到向量λ+与+2之间的关系,利用向量相等解答. 【解答】解:因为向量,不平行,向量λ+与+2平行,所以λ+=μ(+2), 所以,解得; 故答案为:. 14.(5分)(2016•新课标Ⅲ)若x,y满足约束条件,则z=x+y的最大值为 . 【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值. 【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大, 由得D(1,), 所以z=x+y的最大值为1+; 故答案为:. 15.(5分)(2015•新课标Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3 . 【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案. 【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5, 令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),① 令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.② ①﹣②得,2(a1+a3+a5)=16(a+1), 所以2×32=16(a+1), 所以a=3. 故答案为:3. 16.(5分)(2015•新课标Ⅱ)设数列{an}的前n项和为Sn,且a1=﹣1,an+1=Sn+1Sn,则Sn= ﹣ . 【分析】通过Sn+1﹣Sn=an+1可知Sn+1﹣Sn=Sn+1Sn,两边同时除以Sn+1Sn可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论. 【解答】解:∵an+1=Sn+1Sn, ∴Sn+1﹣Sn=Sn+1Sn, ∴﹣=1, 又∵a1=﹣1,即=﹣1, ∴数列{}是以首项、公差均为﹣1的等差数列, ∴=﹣n, ∴Sn=﹣, 故答案为:﹣. 三、解答题(共5小题,满分60分) 17.(12分)(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求; (2)若AD=1,DC=,求BD和AC的长. 【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解. (2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长. 【解答】解:(1)如图,过A作AE⊥BC于E, ∵==2 ∴BD=2DC, ∵AD平分∠BAC ∴∠BAD=∠DAC 在△ABD中,=,∴sin∠B= 在△ADC中,=,∴sin∠C=; ∴==.…6分 (2)由(1)知,BD=2DC=2×=. 过D作DM⊥AB于M,作DN⊥AC于N, ∵AD平分∠BAC, ∴DM=DN, ∴==2, ∴AB=2AC, 令AC=x,则AB=2x, ∵∠BAD=∠DAC, ∴cos∠BAD=cos∠DAC, ∴由余弦定理可得:=, ∴x=1, ∴AC=1, ∴BD的长为,AC的长为1. 18.(12分)(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可); (2)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率. 【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可; (2)根据概率的互斥和对立,以及概率的运算公式,计算即可. 【解答】解:(1)两地区用户满意度评分的茎叶图如下 通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散; (2)记CA1表示事件“A地区用户满意度等级为满意或非常满意”, 记CA2表示事件“A地区用户满意度等级为非常满意”, 记CB1表示事件“B地区用户满意度等级为不满意”, 记CB2表示事件“B地区用户满意度等级为满意”, 则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥, 则C=CA1CB1∪CA2CB2, P(C)=P(CA1CB1)+P(CA2CB2)=P(CA1)P(CB1)+P(CA2)P(CB2), 由所给的数据CA1,CA2,CB1,CB2,发生的频率为,,,, 所以P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=, 所以P(C)=×+×=0.48. 19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF与平面α所成角的正弦值. 【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形; (2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值. 【解答】解:(1)交线围成的正方形EFGH如图: (2)作EM⊥AB,垂足为M,则: EH=EF=BC=10,EM=AA1=8; ∴,∴AH=10; 以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则: A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8); ∴; 设为平面EFGH的法向量,则: ,取z=3,则; 若设直线AF和平面EFGH所成的角为θ,则: sinθ==; ∴直线AF与平面α所成角的正弦值为. 20.(12分)(2015•新课标Ⅱ)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M. (1)证明:直线OM的斜率与l的斜率的乘积为定值; (2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论. (2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM,建立方程关系即可得到结论. 【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM), 将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0, 则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0, 则x1+x2=,则xM==,yM=kxM+b=, 于是直线OM的斜率kOM==, 即kOM•k=﹣9, ∴直线OM的斜率与l的斜率的乘积为定值. (2)四边形OAPB能为平行四边形. ∵直线l过点(,m), ∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0, 即k2m2>9b2﹣9m2, ∵b=m﹣m, ∴k2m2>9(m﹣m)2﹣9m2, 即k2>k2﹣6k, 即6k>0, 则k>0, ∴l不过原点且与C有两个交点的充要条件是k>0,k≠3, 由(1)知OM的方程为y=x, 设P的横坐标为xP, 由得,即xP=, 将点(,m)的坐标代入l的方程得b=, 即l的方程为y=kx+, 将y=x,代入y=kx+, 得kx+=x 解得xM=, 四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM, 于是=2×, 解得k1=4﹣或k2=4+, ∵ki>0,ki≠3,i=1,2, ∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形. 21.(12分)(2015•新课标Ⅱ)设函数f(x)=emx+x2﹣mx. (1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围. 【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论; (2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围. 【解答】解:(1)证明:f′(x)=m(emx﹣1)+2x. 若m≥0,则当x∈(﹣∞,0)时,emx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,emx﹣1≥0,f′(x)>0. 若m<0,则当x∈(﹣∞,0)时,emx﹣1>0,f′(x)<0;当x∈(0,+∞)时,emx﹣1<0,f′(x)>0. 所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增. (2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值. 所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是 即 设函数g(t)=et﹣t﹣e+1,则g′(t)=et﹣1. 当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增. 又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0. 当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立; 当m>1时,由g(t)的单调性,g(m)>0,即em﹣m>e﹣1. 当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1. 综上,m的取值范围是[﹣1,1] 四、选做题.选修4-1:几何证明选讲 22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点. (1)证明:EF∥BC; (2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积. 【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论; (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可. 【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC, ∴AD是∠CAB的角平分线, 又∵圆O分别与AB、AC相切于点E、F, ∴AE=AF,∴AD⊥EF, ∴EF∥BC; (2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线, 又∵EF为圆O的弦,∴O在AD上, 连结OE、OM,则OE⊥AE, 由AG等于圆O的半径可得AO=2OE, ∴∠OAE=30°,∴△ABC与△AEF都是等边三角形, ∵AE=2,∴AO=4,OE=2, ∵OM=OE=2,DM=MN=,∴OD=1, ∴AD=5,AB=, ∴四边形EBCF的面积为×﹣××=. 选修4-4:坐标系与参数方程 23.(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ. (1)求C2与C3交点的直角坐标; (2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值. 【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标. (2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出. 【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ, ∴x2+y2=2y. 同理由C3:ρ=2cosθ.可得直角坐标方程:, 联立, 解得,, ∴C2与C3交点的直角坐标为(0,0),. (2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,其极坐标方程为:θ=α(ρ∈R,ρ≠0), ∵A,B都在C1上, ∴A(2sinα,α),B. ∴|AB|==4, 当时,|AB|取得最大值4. 选修4-5:不等式选讲 24.(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明: (1)若ab>cd,则+>+; (2)+>+是|a﹣b|<|c﹣d|的充要条件. 【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证; (2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证. 【解答】证明:(1)由于(+)2=a+b+2, (+)2=c+d+2, 由a,b,c,d均为正数,且a+b=c+d,ab>cd, 则>, 即有(+)2>(+)2, 则+>+; (2)①若+>+,则(+)2>(+)2, 即为a+b+2>c+d+2, 由a+b=c+d,则ab>cd, 于是(a﹣b)2=(a+b)2﹣4ab, (c﹣d)2=(c+d)2﹣4cd, 即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|; ②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2, 即有(a+b)2﹣4ab<(c+d)2﹣4cd, 由a+b=c+d,则ab>cd, 则有(+)2>(+)2. 综上可得,+>+是|a﹣b|<|c﹣d|的充要条件. 参与本试卷答题和审题的老师有:wkl197822;changq;依依;吕静;双曲线;刘长柏;maths;cst;w3239003;whgcn;雪狼王;沂蒙松(排名不分先后) 2017年2月3日查看更多