- 2021-07-01 发布 |
- 37.5 KB |
- 14页



申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮复习精品学案:第4讲 基本初等函数
2013年普通高考数学科一轮复习精品学案 第4讲 基本初等函数 一.课标要求 1.指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.知道指数函数与对数函数互为反函数(a>0,a≠1)。 二.命题走向 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2013年对本节的考察是: 1.题型有两个选择题和一个解答题; 2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大。 三.要点精讲 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根, 1)当为奇数时,次方根记作; 2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作。 ②性质:1);2)当为奇数时,; 3)当为偶数时,。 (2).幂的有关概念 ①规定:1)N*;2); n个 3)Q,4)、N* 且。 ②性质:1)、Q); 2)、 Q); 3) Q)。 (注)上述性质对r、R均适用。 (3).对数的概念 ①定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数。 1)以10为底的对数称常用对数,记作; 2)以无理数为底的对数称自然对数,,记作; ②基本性质: 1)真数N为正数(负数和零无对数);2); 3);4)对数恒等式:。 ③运算性质:如果则 1); 2); 3)R)。 ④换底公式: 1);2)。 2.指数函数与对数函数 (1)指数函数: ①定义:函数称指数函数, 1)函数的定义域为R;2)函数的值域为; 3)当时函数为减函数,当时函数为增函数。 ②函数图像: 1)指数函数的图象都经过点(0,1),且图象都在第一、二象限; 2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴); 3)对于相同的,函数的图象关于轴对称。 ①, ②, ③ ①, ②, ③, ③函数值的变化特征: (2)对数函数: ①定义:函数称对数函数, 1)函数的定义域为;2)函数的值域为R; 3)当时函数为减函数,当时函数为增函数; 4)对数函数与指数函数互为反函数。 ②函数图像: 1)对数函数的图象都经过点(0,1),且图象都在第一、四象限; 2)对数函数都以轴为渐近线(当时,图象向上无限接近轴;当时,图象向下无限接近轴); 4)对于相同的,函数的图象关于轴对称。 ③函数值的变化特征: ①, ②, ③. ①, ②, ③. 四.典例解析 题型1:指数运算 例1.(1)计算:; (2)化简:。 解:(1)原式= ; (2)原式= 。 点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。 例2.已知,求的值。 解:∵, ∴, ∴, ∴, ∴, ∴, 又∵, ∴。 点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。 题型2:对数运算 例3.计算 (1);(2); (3)。 解:(1)原式 ; (2)原式 ; (3)分子=; 分母=; 原式=。 点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧。 例4.设、、为正数,且满足 (1)求证:; (2)若,,求、、的值。 证明:(1)左边 ; 解:(2)由得, ∴……………① 由得………… ……………② 由①②得……………………………………③ 由①得,代入得, ∵, ∴………………………………④ 由③、④解得,,从而。 点评:对于含对数因式的证明和求值问题,还是以对数运算法则为主,将代数式化简到最见形式再来处理即可。 题型3:指数、对数方程 例5.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。 解:(1)原方程为, , 时方程有实数解; (2)①当时,,∴方程有唯一解; ②当时,. 的解为; 令 的解为; 综合①、②,得 1)当时原方程有两解:; 2)当时,原方程有唯一解; 3)当时,原方程无解。 点评:具有一些综合性的指数、对数问题,问题的解答涉及指数、对数函数,二次函数、参数讨论、方程讨论等各种基本能力,这也是指数、对数问题的特点,题型非常广泛,应通过解题学习不断积累经验。 例6.(2006辽宁 文13)方程的解为 。 解:考察对数运算。原方程变形为,即,得。且有。从而结果为。 点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解。 题型4:指数函数的概念与性质 例7.设( ) A.0 B.1 C.2 D.3 解:C;,。 点评:利用指数函数、对数函数的概念,求解函数的值。 例8.已知试求函数f(x)的单调区间。 解:令,则x=,t∈R。 所以即,(x∈R)。 因为f(-x)=f(x),所以f(x)为偶函数,故只需讨论f(x)在[0,+∞)上的单调性。 任取,,且使,则 (1)当a>1时,由,有,,所以 ,即f(x)在[0,+∞]上单调递增。 (2)当01时,函数y=logax和y=(1-a)x的图象只可能是( ) 解:当a>1时,函数y=logax的图象只能在A和C中选, 又a>1时,y=(1-a)x为减函数。 答案:B 点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性。 例14.设A、B是函数y= log2x图象上两点, 其横坐标分别为a和a+4, 直线l: x=a+2与函数y= log2x图象交于点C, 与直线AB交于点D。 (1)求点D的坐标; (2)当△ABC的面积大于1时, 求实数a的取值范围。 解:(1)易知D为线段AB的中点, 因A(a, log2a ), B(a+4, log2(a+4)), 所以由中点公式得D(a+2, log2 )。 (2)S△ABC=S梯形AA′CC′+S梯形CC′B′B- S梯形AA′B′B=…= log2, 其中A′,B′,C′为A,B,C在x轴上的射影。 由S△ABC= log2>1, 得0< a<2-2。 点评:解题过程中用到了对数函数性质,注意底数分类来处理,根据函数的性质来处理复杂问题。 题型8:指数函数、对数函数综合问题 例15.在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,对每个自然数n点Pn位于函数y=2000()x(0bn+1>bn+2。 则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1>bn, 即()2+()-1>0, 解得a<-5(1+)或a>5(-1)。 ∴5(-1)查看更多
相关文章
- 当前文档收益归属上传用户