数学(理)卷·2019届吉林省延边市第二中学高二上学期期中考试(2017-11)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学(理)卷·2019届吉林省延边市第二中学高二上学期期中考试(2017-11)

延边第二中学2017—2018学年度第一学期期中考试 高二数学试卷(理科)‎ 考试时间:120分钟 总分:140分 一、 选择题(每小题4分,共48分,每题只有一项是符合要求的)‎ ‎1.设命题:,则为( )‎ A. B.‎ C D.‎ ‎2.如果命题¡°(p或q)的否定¡±为假命题,则(  )‎ A.p、q均为真命题 B.p、q均为假命题 C.p、q中至少有一个为真命题 D.p、q中至多有一个为真命题 ‎3.与命题¡°若a¡ÊM,则b?M¡±等价的命题是(  )‎ A.若a?M,则b?M B.若b?M,则a¡ÊM C.若a?M,则b¡ÊM D.若b¡ÊM,则a? M ‎4.已知+=1(x>0,y>0),则x+y的最小值为(  )‎ A.12 B.14 C.16 D.18‎ ‎5.在中,,则(   )‎ ‎ [来 ‎6.若,则下列命题中正确的是( )‎ A.若,则 B.若,则 C.若,则 D.若,则 ‎7.已知数列满足,则( )‎ A. B. C. D. ‎ ‎8. 若实数满足,则的最小值为( )‎ A. B.2 C.2 D.4‎ ‎9.已知集合,,且,则实数的取值范围是(  )‎ A. B. C. D.‎ ‎10.设集合U={(x,y)|x¡ÊR,y¡ÊR},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n¡Ü0},那么点 P(2,3)¡ÊA¡É(?UB)的充要条件是 (  ) ‎ A.m>-1,n<5 B.m<-1,n<5‎ C.m>-1,n>5 D.m<-1,n>5‎ ‎11.一同学在电脑中打出如下若干个圈:????????????????????……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的?个数是 (  )‎ ‎ A.10 B.9 C.8 D.11‎ ‎12.在△ABC中,若·=|-|=8,则△ABC的面积的最大值为 (  )‎ ‎ ‎ A.8 B.16 C.10 D.8 二、填空题 (每小题4分,共16分.将最简答案填在答题纸相应位置)‎ ‎13.关于的不等式的解集为 .‎ ‎14.满足约束条件,则的最小值为 .‎ ‎15.在中,角所对边长分别为,若,则的最小值为_________.‎ ‎16.设二次函数的值域为,则的最大值是_________.‎ 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).‎ ‎17. (本小题满分10分)已知关于的不等式的解集不是空集,记的最小值为.‎ ‎(Ⅰ)求的值; ‎ ‎(Ⅱ)若不等式的解集包含 ,求实数的取值范围.‎ ‎18. (本小题满分10分)钓鱼岛自古以来就是我国的神圣领土.为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船,船在船的正东方向,且两船保持海里的距离,某一时刻两海监船同时测得在的东北方向,的北偏东方向有一艘某国海上保安厅舰船. (1)求的值. (2)海监船奉命以每小时海里的速度前往处对某国舰船进行驱逐,那么海监船到达处最少需 要多少时间?‎ ‎19.(本小题满分12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根,若p∨q为真,p∧q为假,求实数的取值范围.‎ ‎20.(本小题满分12分)已知单调递增的等比数列满足,且是,的等差中项.(1)求数列的通项公式;‎ ‎(2)若,,求.‎ ‎21.(本小题满分12分)解关于的不等式.‎ 22. ‎(附加题,本题满分20分,其中第一问6分,第二问14分,计入总分)‎ 设数列{}满足 ‎(1)求{}的通项公式;‎ ‎(2)若求证:数列{}的前n项和 延边第二中学2017—2018学年度第一学期期中考试(答案)‎ 高二数学试卷(理科)‎ ‎ [ 1.C 2. C 3.D 4.D 5.B 6.B 7.C 8.C 9.C 10.A 11.B 12.D ‎ 13.答案: 14.答案:-5 15.答案. 16.【答案】‎ ‎17. 解:(Ⅰ)因为,当且仅当时取等号,‎ 故,即. …………………5分 ‎ ‎(Ⅱ) 则< 0. >0.‎ 由已知得1->在上恒成立 ‎<<在上恒成立 ‎-4<<3. ‎ 实数的取值范围是(-4,3)…………………10分 ‎18. .解:(1)过B作BD?AC于D,由题意可知,?BAC=45°,?ABC=105° ??ACB=180°-?BAC-?ABC=30°所以cos?ACB= (2) 在Rt?ABD中BD=AB·sin?BAD=40×(海里) ‎ 在Rt?BCD中,BC=(海里) ?海监船B需要小时 答:海监船B赶往C处最少需要小时.‎ ‎19. ‎ ‎20. 【答案】(1) (2)‎ ‎【解析】(1)设等比数列的首项为,公比为.依题意,有,代入,得.因此,‎ 即有解得或 又数列单调递增,则故.‎ ‎(2)∵,¡à,¢Ù ‎,¢Ú ‎¢Ù-¢Ú,得.‎ ‎21. 解:显然当时,原不等式是不成立的.‎ 当a≠0时原不等式可化为,即,‎ 等价于(),‎ 当时,()式可转化为,即,即.‎ 当时,()式可转化为.‎ 当时,()式可转化为.‎ 又当时,,‎ 所以当或时,;‎ 当时,;‎ 当时,.‎ 综上,当时,原不等式的解集为或;‎ 当时,原不等式的解集为;‎ 当时,原不等式的解集为;‎ 当时,原不等式的解集为;‎ 当时,原不等式的解集为.‎ ‎22.解:(1)此时我们不妨设 即与已知条件式比较系数得 又是首项为2,公比为2的等比数列。.‎ ‎(2)由(1)知. 当时,‎ 当n=1时,=1也适合上式,所以,故 方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.)‎ ‎ .‎ 方法二 :在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我们看:‎ 易验证当n=1,2时 . 综上
查看更多

相关文章

您可能关注的文档