2018届二轮复习数学思想方法学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习数学思想方法学案(全国通用)

专题22 数学思想方法 函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.‎ 在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。‎ 因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。‎ 分类讨论思想是历年高考的必考内容,它不仅是高考的重点和热点,也是高考的考点,高考中经常会有一道解答题,解题思路直接依赖于分类讨论.‎ 预测以后的高考,将会一如既往地考查分类讨论思想,特别在解答题中(尤其导数与函数),将有一道进行分类、求解的把关题,选择题、填空题也会出现不同情形的分类讨论求解题.‎ 化归与转化的思想在高考中必然考到,主要可能出现在立体几何的大题中,将空间立体几何的问题转化为平面几何问题,解析几何大题中求范围问题的题转化为求函数值域范围问题等,总之将复杂问题转化为简单问题是高考中解决问题的重要思想方法.‎ 一、函数与方程思想 一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.‎ ‎1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.‎ ‎2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.‎ 可用函数与方程思想解决的相关问题.‎ ‎1.函数思想在解题中的应用主要表现在两个方面:‎ ‎(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;‎ ‎(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.‎ ‎2.方程思想在解题中的应用主要表现在四个方面:‎ ‎(1)解方程或解不等式;‎ ‎(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;‎ ‎(3)需要转化为方程的讨论,如曲线的位置关系等;‎ ‎(4)构造方程或不等式求解问题.‎ 二、数形结合的数学思想 数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.。‎ 应用数形结合的思想,应注意以下数与形的转化:‎ 数形结合思想解决的问题常有以下几种:‎ ‎(1)构建函数模型并结合其图象求参数的取值范围;‎ ‎(2)构建函数模型并结合其图象研究方程根的范围;‎ ‎(3)构建函数模型并结合其图象研究量与量之间的大小关系;‎ ‎(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;‎ ‎(5)构建立体几何模型研究代数问题;‎ ‎(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;‎ ‎(7)构建方程模型,求根的个数;‎ ‎(8)研究图形的形状、位置关系、性质等.‎ 常见适用数形结合的两个着力点是:‎ 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.‎ 以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。‎ 数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域;(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.这种思想方法体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决。‎ ‎1.数形结合的途径 ‎(1)通过坐标系形题数解 借助于建立直角坐标系、复平面可以将图形问题代数化。这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考察的);值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理)‎ 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。。‎ 常见方法有:‎ ‎①解析法:建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系。‎ ‎②三角法:将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径。‎ ‎③向量法:将几何图形向量化,运用向量运算解决几何中的平角、垂直、夹角、距离等问题。把抽象的几何推理化为代数运算。特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循。‎ ‎(2)通过转化构造数题形解 许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a>0与距离互化,将a2与面积互化,将a2+b2+ab=a2+b2-2与余弦定理沟通,将a≥b≥c>0且b+c>a中的a、b、c与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的)。另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常借助于相伴而充分地发挥作用。‎ 常见的转换途径为:‎ ‎①方程或不等式问题常可以转化为两个图象的交点位置关系的问题,并借助函数的图象和性质解决相关的问题。‎ ‎②利用平面向量的数量关系及模的性质来寻求代数式性质。‎ ‎(3)构造几何模型。通过代数式的结构分析,构造出符合代数式的几何图形,如将与正方形的面积互化,将与体积互化,将与勾股定理沟通等等。‎ ‎(4)利用解析几何中的曲线与方程的关系,重要的公式(如两点间的距离,点到直线的距离,直线的斜率,直线的截距)、定义等来寻求代数式的图形背景及有关性质。‎ ‎2.数形结合的原则 ‎(1)等价性原则 在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导。‎ ‎(2)双向性原则 在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的。‎ 例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化。‎ ‎(3)简单性原则 就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种流性的模式——代数问题运用几何方法,几何问题寻找代数方法。‎ 三、分类讨论的思想 分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于是增加的一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.‎ ‎1.由数学概念引起的分类讨论:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.‎ ‎2.由性质、定理、公式的限制引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.‎ ‎3.由数学运算要求引起的分类讨论:如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同时乘以一个正数、负数,三角函数的定义域等.‎ ‎4.由图形的不确定性引起的分类讨论:有的图形类型、位置需要分类,如角的终边所在的象限;点、线、面的位置关系等.‎ ‎5.由参数的变化引起的分类讨论:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.‎ ‎6.由实际意义引起的讨论:此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用.‎ 四、化归与转化的思想 ‎1、化归与转化的思想方法 解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换, 将原问题转化为一个新问题(相对来说,是自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.‎ ‎2 、化归与转化的思想方法应用的主要方向 化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化的过程.化归与转化思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维的转化,多元向一元的转化,高次向低次的转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现.‎ ‎3、等价转化和非等价转化 转化有等价转化和非等价转化之分.等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证.‎ 考点一、运用函数与方程思想解决字母(或式子)的求值或取值范围问题 例1.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是________.‎ ‎【答案】(1,2]‎ ‎【解析】由题意f(x)的图象如右图,则 ‎∴1<a≤2. ‎ ‎【变式探究】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为(  )‎ A.y=x3-x2-x B.y=x3+x2-3x C.y=x3-x D.y=x3+x2-2x 考点二、运用函数与方程思想解决方程问题 例2、设函数f(x)=则满足f(f(a))=‎2f(a)的a取值范围是(  )‎ A. B.[0,1]‎ C. D.[1, +∞)‎ ‎【答案】C ‎【规律方法】‎ 研究此类含参数的三角、指数、对数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.‎ ‎【变式探究】已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是(  )‎ A. B. C. D. ‎【答案】D ‎【解析】记h(x)=-f(2-x)在同一坐标系中作出f(x)与h(x)的图象如图,直线AB:y=x-4,当直线l∥AB且与f(x)的图象相切时,由 解得b′=-,--(-4)=,‎ 所以曲线h(x)向上平移个单位后,所得图象与f(x)的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当<b<2时,f(x)与g(x)的图象有四个不同的交点,即y=f(x)-g(x)恰有4个零点.选D.‎ 考点三、运用函数与方程思想解决不等式问题 例3.已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是________.‎ ‎【答案】(-∞,0)∪(1,+∞)‎ ‎【规律方法】‎ ‎(1)在解决值的大小比较问题时,通过构造适当的函数,利用函数的单调性或图象解决是一种重要思想方法. ‎ ‎(2)在解决不等式恒成立问题时,一种重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数. ‎ ‎(3)在解决不等式证明问题时,构造适当的函数,利用函数方法解题是近几年各省市高考的一个热点.用导数来解决不等式问题时,一般都要先根据欲证的不等式构造函数,然后借助导数研究函数的单调性情况,再结合在一些特殊点处的函数值得到欲证的不等式.‎ ‎【变式探究】设函数f(x)=2x3+3ax2+3bx+‎8c在x=1及x=2时取到极值.‎ ‎(1)求a,b的值;‎ ‎(2)若对于任意的x∈[0,3]都有f(x)0;‎ 当12时,f′(x)>0.‎ 所以此时1与2都是极值点,‎ 因此a=-3,b=4,f(x)=2x3-9x2+12x+‎8c.‎ ‎(2)由(1)知函数y=f(x)在x=1处取到极大值f(1)=5+‎8c,在x=2处取到极小值f(2)=4+‎8c.‎ 因为f(0)=‎8c,f(3)=9+‎8c,‎ 所以当x∈[0,3]时,函数y=f(x)的最大值是f(3)=9+‎8c,所以要使对于任意的x∈[0,3]都有f(x)0,解得c<-1或c>9.‎ 考点四、运用函数与方程思想解决最优化问题 例4、某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为‎5千米和‎40千米,点N到l1,l2的距离分别为‎20千米和‎2.5千米,R以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.‎ ‎ (1)求a,b的值;‎ ‎(2)设公路l与曲线C相切于P点,P的横坐标为t.‎ ‎①请写出公路l长度的函数解析式f(t),并写出其定义域;‎ ‎②当t为何值时,公路l的长度最短?求出最短长度.‎ 解 (1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).‎ 将其分别代入 y=,得 解得 ‎(2)①由(1)知,y=(5≤x≤20),‎ 则点P的坐标为,‎ ‎【规律方法】‎ 解析几何、立体几何及其实际应用等问题中的最优化问题,一般利用函数思想来解决,思路是先选择恰当的变量建立目标函数,再用函数的知识来解决. ‎ ‎【变式探究】某地建一座桥,两端的桥墩已建好,这两桥墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两桥墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.‎ ‎(1)试写出y关于x的函数关系式.‎ ‎(2)当m=‎640米时,需新建多少个桥墩才能使y最小?‎ ‎【解析】(1)设需要新建n个桥墩,(n+1)x=m,‎ 即n=-1,所以y=f(x)=256n+(n+1)(2+)x=256+(2+)x =+m+‎2m-256.‎ ‎【小结反思】‎ ‎1.函数与方程思想在许多容易题中也有很多体现.‎ ‎2.有很多时候可以将方程看成函数来研究,这就是函数思想.‎ ‎3.有些时候可以将函数看成方程来研究,这就是最简单的方程思想.我们可以有意通过函数思想部分训练提升自己的数学能力.‎ 考点五、 用数形结合思想解决方程、不等式及函数的有关性质问题 例5、(1)已知:函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lg x解的个数是(  )‎ A.5个 B.7个 C.9个 D.10个 ‎(2)设有函数f(x)=a+和g(x)=x+1,已知x∈[-4,0]时恒有f(x)≤g(x),求实数a的取值范围.‎ 思路点拨:(1)在同一坐标系中画出y=f(x)和y=lg x的图象,由它们交点个数判断方程的解的个数.‎ ‎(2)先将不等式f(x)≤g(x)转化为≤x+1-a,然后在同一坐标系中分别作出函数y=和y=x+1-a的图象,移动y=x+1-a的图象使其满足条件,数形结合得要满足的数量关系.‎ 解析:(1)由题意可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数. ‎ 由图象可知共9个交点,故选C.‎ ‎(2)f(x)≤g(x),即a+≤x+1,‎ 变形得≤x+1-a,‎ 令y=,①‎ y=x+1-a,②‎ 误区警示:作图时弄清y=lg x的图象何时超过1,否则易造成结果错误.‎ ‎【规律方法】‎ ‎(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数. ‎ ‎(2)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化的数量关系来解决不等式的解的问题,往往可以避免繁琐的运算,获得简捷的解答.‎ ‎(3)函数的单调性经常联系函数图象的升、降,奇偶性经常联系函数图象的对称性,最值(值域)经常联系函数图象的最高、最低点的纵坐标.‎ ‎【变式探究】已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.‎ ‎【答案】-8.‎ 考点六、用数形结合思想解决参数、代数式的最值、取值范围问题 例6、 (1)已知x,y满足条件+=1,求y-3x的最大值与最小值.‎ ‎(2)已知实数x,y满足不等式组求函数z=的值域.‎ 思路点拨:(1)令b=y-3x,即y=3x+b,视b为直线y=3x+b的截距,而直线与椭圆必有公共点,故相切时,b有最值.‎ ‎(2)此题可转化成过点(-1,-3)与不等式组表示区域的点的连线的斜率的范围.‎ ‎【解析】(1)令y-3x=b,则y=3x+b,原问题转化为在椭圆+=1上找一点,使过该点的直线斜率为3,且在y轴上有最大截距或最小截距.‎ 由图可知,当直线y=3x+b与椭圆+=1相切时,有最大或最小的截距.‎ 将y=3x+b代入+=1,‎ 由图显见,过点P和点A(0,2)的直线斜率最大,‎ zmax==5.‎ 过点P向半圆作切线,切线的斜率最小.‎ 设切点为B(a,b),则过点B的切线方程为ax+by=4.又B在半圆周上,P在切线上,则有又a>0,‎ 解得因此zmin=.‎ 综上可知函数的值域为.‎ 误区警示:此题很容易犯的错误是由z=得到点(-1,-3)的坐标时,很容易写成(1,3),所以做题时要看清顺序.‎ ‎【规律方法】‎ 如果参数、代数式的结构蕴含着明显的几何特征,一般考虑用数形结合的方法来解题,即所谓的几何法求解,比较常见的对应有:‎ ‎(1)y=kx+b中k表示直线的斜率,b表示直线在y轴上的截距.‎ ‎(2)表示坐标平面上两点(a,b),(m,n)连线的斜率.‎ ‎(3)表示坐标平面上两点(a,b),(m,n)之间的距离.‎ ‎(4)导函数f′(x0)表示曲线在点(x0,f(x0))处切线的斜率.‎ 只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.‎ ‎【变式探究】已知x,y满足条件+=1,求5x+4y的最大值与最小值.‎ 考点七、根据数学的概念分类讨论 例7、设0<x<1,a>0且a≠1,比较|loga(1-x)|与|loga(1+x)|的大小.‎ 思路点拨:先利用0<x<1确定1-x与1+x的范围,再利用绝对值及对数函数的概念分类讨论两式差与0的大小关系,从而比较出大小.‎ ‎【规律方法】‎ 本题是由对数函数的概念内涵引起的分类讨论,我们称为概念分类型.由概念内涵引起的分类还有很多:如绝对值|a|分a>0,a=0,a<0三种情况;直线的斜率分倾斜角θ≠90°,斜率k存在,倾斜角θ=90°,斜率不存在;指数、对数函数[y=ax(a>0且a≠1)与y=logax(a>0且a≠1)]可分为a>1,0<a<1两种类型;直线的截距式分直线过原点时[为y=kx],不过原点时等.‎ 考点八、根据运算的要求或性质、定理、公式的条件分类讨论 例8、在等差数列{an}中,a1=1,满足a2n=2an,n=1,2,…‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)记bn=anpan(p>0),求数列{bn}的前n项和Tn.‎ 思路点拨:(1)由a2n=2an,n=1,2,…求出公差d,即得{an}的通项公式.‎ ‎(2)先求{bn}的通项公式,然后用错位相减可求Tn,但由于公比q不确定,故用等比数列前n项和公式求Tn时要分类讨论. ‎ ‎【解析】(1)设等差数列{an}的公差为d,‎ 由a2n=2an得a2=‎2a1=2,所以d=a2-a1=1.‎ 又a2n=an+nd=an+n=2an,‎ ‎【规律方法】‎ ‎(1)一次函数、二次函数、指数函数、对数函数的单调性,均值定理,等比数列的求和公式等性质、定理与公式在不同的条件下有不同的结论,或者在一定的限制条件下才成立,这时要小心,应根据题目条件确定是否进行分类讨论. ‎ ‎(2)分类讨论的有些问题是由运算的需要引发的.比如除法运算中分母能否为零的讨论;解方程及不等式两边同乘以一个数是否为零,是正数,还是负数的讨论;二次方程运算中对两根大小的讨论;求函数单调性时,导数正负的讨论;排序问题;差值比较中的差的正负的讨论;有关去绝对值或根号问题中等价变形引发的讨论等.‎ 考点九、根据字母的取值情况分类讨论 例9、已知函数f(x)=2x3-3x.‎ ‎(1)求f(x)在区间[-2,1]上的最大值;‎ ‎(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;‎ ‎(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切(只需写出结论)?‎ ‎【解析】(1)由f(x)=2x3-3x得f′(x)=6x2-3,令f′(x)=0,得x=-或x=,因为f(-2)=-10,f=,f=-,f(1)=-1,‎ 所以f(x)在区间[-2,1]上的最大值为f=.‎ ‎(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),‎ 则y0=2x-3x0,且切线斜率为k=6x-3,所以切线方程为y-y0=(6x-3)(x-x0),‎ 因此t-y0=(6x-3)(1-x0),整理得:4x-6x+t+3=0,‎ 设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”, ‎ ‎【规律方法】‎ 题目中含有参数的问题(含参型),主要包括:含有参数的不等式的求解;含有参数的方程的求解;对于解析式系数是参数的函数,求最值与单调性问题;二元二次方程表示曲线类型的判定等.求解这类问题的一般思路是:结合参数的意义及对结果的影响而进行分类讨论.讨论时,应全面分析参数变化引起结论的变化情况,参数有几何意义时还要考虑适当地运用数形结合思想.‎ 考点十、根据图形位置或形状变动分类讨论 例10、长方形ABCD中,|AB|=4,|BC|=8,在BC边上取一点P,使|BP|=t,线段AP的垂直平分线与长方形的边的交点为Q,R时,用t表示|QR|.‎ 思路点拨:建立平面直角坐标系,设法求出点Q,R的坐标,利用两点间的距离公式建模.‎ y=4,‎ 可得Q,R,‎ 这时|QR|= ;‎ 当4<t≤8时,Q,R两点分别在BC,AD上,‎ 对方程①分别令y=0和y=4,‎ 可得Q,R,‎ 这时|QR|=.‎ 综上所述:当0≤t≤8-4时,|QR|=2;‎ 当8-4<t≤4时,|QR|= ;‎ 当4<t≤8时,|QR|=.‎ ‎【规律方法】‎ 一般由图形的位置或形状变动引发的讨论包括:二次函数对称轴位置的变动;函数问题中区间的变动;函数图象形状的变动;直线由斜率引起的位置变动;圆锥曲线由焦点引起的位置变动或由离心率引起的形状变动;立体几何中点、线、面的位置变动等. ‎ ‎【小结反思】‎ ‎1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结.‎ ‎2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形;(6)数形结合;(7)缩小范围等.‎ ‎3.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不漏不重”. ‎ ‎4.解题时把好“四关”. ‎ ‎(1)要深刻理解基本知识与基本原理,把好“基础关”;‎ ‎(2)要找准划分标准,把好“分类关”;‎ ‎(3)要保证条理分明,层次清晰,把好“逻辑关”;‎ ‎(4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”.‎ 考点十一、 数列问题化归为函数问题解决 例11、某厂2016年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,1月份投入资金建设恰好与1月份的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,则全年总利润M与全年总投入N的大小关系是(  )‎ A.M>N        B.M
查看更多

相关文章