- 2021-06-30 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2010-2019高考真题分类训练 专题十 概率与统计第三十讲 概率答案
专题十 概率与统计 第三十讲 概率 2019年 1.解析:由题意,通过列举可知从这5只兔子中随机取出3只的所有情况数为10, 恰有2只测量过该指标的所有情况数为6.所以.故选B. 2.解析 设两位男同学分别为,,两位女同学分别为,. 根据列举法,两位男同学跟两位女同学排成一列可能会出现的情况有:,,,,,,,,,,,,,,,,,,,,,,,,共24种. 其中,两位女同学相邻的情况有:,,,,,,,,,,,,共12种. 根据古典概型计算公式可得两位女同学相邻的概率为. 故选D. 2010-2018年 答案部分 1.D【解析】将2名男同学分别记为,,3名女同学分别记为,,.设“选中的2人都是女同学”为事件,则从5名同学中任选2人参加社区服务的所有可能情况有,,,,,,,,,共19种,其中事件包含的可能情况有,,共3种,故,故选D. 2.B【解析】设“只用现金支付”为事件,“既用现金支付也用非现金支付”为事件,“不用现金支付”为事件,则,故选B. 3.B【解析】设正方形的边长为,由题意可知,太极图的黑色部分的面积是圆的面积的一半,由几何概率的计算公式,所求概率为,选B. 4.D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数: 总计有25种情况,满足条件的有10种. 所以所求概率为. 5.C【解析】从这5支彩笔中任取2支不同颜色的彩笔,有10种不同的取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫),而取出的两只中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,所以满足题意的概率为.选C. 6.A【解析】由题意甲不输的概率为.故选A. 7.C【解析】从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概率的概率计算公式,所求的概率为.故选C. 8.B【解析】记“至少需要等待15秒才出现绿灯”为事件,则,故选B. 9.B【解析】设5名学生分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲、乙),(甲、丙),(甲、丁),(甲、戊),(乙、丙),(乙、丁),(乙、戊),(丙、丁),(丙、戊),(丁、戊)共10种情况,其中甲被选中的有(甲、乙),(甲、丙 ),(甲、丁),(甲、戊)4种情况,所以甲被选中的概率为. 10.C【解析】开机密码的所有可能结果有:(,1),(,2),(,3),(,4),(,5),(,1),(,2),(,3),(,4),(, 5),(,1),(,2),(,3),(,4),(,5),共15种,所以小敏输入一次密码能够成功开机的概率是,故选C . 11.C 【解析】 从1,2,3,4,5中任取3个不同的数,有{1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}、{2,3,4}、{2,3,5}、{2,4,5}、{3,4,5}共10个基本事件,其中这3个数能构成一组勾股数的只有{3,4,5},∴所求概率为,选C. 12.A 【解析】由得,,,,所以,由几何概型概率的计算公式得,,故选A. 13.B【解析】掷两颗均匀的骰子的所有基本事件有种,点数之和为5的有4中,所以所求概率为. 14.B【解析】区间长度为,的长度为, 故满足条件的概率为. 15.B【解析】任取两个不同的数有共6种,2个数之差的绝对值为2的有,故. 16.D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率. 17.C【解析】设线段AC的长为cm,则线段CB的长为()cm,那么矩形的面积为cm2,由,解得。又,所以该矩形面积小于20cm2的概率为,故选C. 18.A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为 “甲1、乙1;甲1、乙2;甲1、乙3;甲2、乙1;甲2、乙2;甲2、乙3;甲3、乙1;甲3、乙2;甲3、乙3;”共9个. 记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1、乙1;甲2、乙2;甲3、乙3;”,共3个,因此. 19.【解析】记2名男生分别为,,3名女生分别为,,,则从中任选2名学生有,,,,,,,,,,共10种情况,其中恰好选中2名女生有,,,共3种情况,故所求概率为. 20.660【解析】由题意可得:总的选择方法为:种方法,其中不满足题意的选法有种方法,则满足题意的选法有:种. 21.【解析】由,解得,根据几何概型的计算公式得概率为[来源:学科网ZXXK] . 22.1和3【解析】为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A,B,C从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A或B,无论是哪一张,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B,此时丙所拿的卡片为A. 23.【解析】设2本数学书分别为A、B,语文书为G,则所有的排放顺序有ABC、ACB、BAC、BCA、CAB、CBA,共6种情况,其中数学书相邻的有ABC、BAC、CAB、CBA,共4种情况,故2本数学书相邻的概率. 24.【解析】甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为. 25.【解析】设3张奖券中一等奖、二等奖和无奖分别为,甲、乙两人各抽取一张的所有情况有共六种,其中两人都中奖的情况有 共2种,所以概率为[来源:学.科.网] 26.3【解析】由几何概型,得,解得. 27.【解析】从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件为{1,2},{2,4}共2个,所以概率为. 28.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.[来源:学_科_网] 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为. (2)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372. 故所求概率估计为. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B. 没有获得好评的电影共有 140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部. 由古典概型概率公式得. (3)增加第五类电影的好评率, 减少第二类电影的好评率. 29.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种. (ii)由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种. 所以,事件发生的概率为. 30.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为, 所以这种酸奶一天的需求量不超过300瓶的概率估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时, 若最高气温不低于25,则=64504450=900; 若最高气温位于区间 [20,25),则=6300+2(450300)4450=300; 若最高气温低于20,则=6200+2(450200)4450=100. 所以,的所有可能值为900,300,100. 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此大于零的概率的估计值为0.8. 31.【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有: ,,,,,,,,,,,,,,共15个. 所选两个国家都是亚洲国家的事件所包含的基本事件有: ,,,共3个. 则所求事件的概率为:. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有: ,共个, 包含但不包括的事件所包含的基本事件有: ,共个, 所以所求事件的概率为. 32.【解析】(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为, 故P(A)的估计值为0.55. (Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为: 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 调查200名续保人的平均保费为 , 因此,续保人本年度平均保费估计值为1.1925a. 33.【解析】用数对表示儿童参加活动先后记录的数,则基本事件空间与点集一一对应.因为中元素个数是所以基本事件总数为 ()记“”为事件. 则事件包含的基本事件共有个,即 所以,即小亮获得玩具的概率为. ()记“”为事件,“”为事件. 则事件包含的基本事件共有个,即[来源:Z,xx,k.Com] 所以, 则事件包含的基本事件共有个,即 所以, 因为 所以,小亮获得水杯的概率大于获得饮料的概率. 34.【解析】(Ⅰ)所有可能的摸出结果是: (Ⅱ)不正确,理由如下: 由(Ⅰ)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为 共4种,所以中奖的概率为,不中奖的概率为,故这种说法不正确. 35.【解析】(Ⅰ)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为. (Ⅱ)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为. (Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为,顾客同时购买甲和丙的概率可以估计为,顾客同时购买甲和丁的概率可以估计为.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 36.【解析】(I)从6名同学中随机选出2人参加知识竞赛的所有可能结果为[来源:学.科.网] {A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种. (II)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能接过为 {A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种. 因此, 事件发生的概率 37.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2. 其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为. 38.【解析】(I)甲校两男教师分别用A、B表示,女教师用C表示; 乙校男教师用D表示,两女教师分别用E、F表示 从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。 从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种, 选出的两名教师性别相同的概率为 (II)从甲校和乙校报名的教师中任选2名的所有可能的结果为: (A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种, 从中选出两名教师来自同一学校的结果有: (A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种, 选出的两名教师来自同一学校的概率为查看更多