2019届二轮复习(理)专题跟踪训练19数列的通项与求和作业(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019届二轮复习(理)专题跟踪训练19数列的通项与求和作业(全国通用)

专题跟踪训练(十九)‎ 一、选择题 ‎1.(2018·安徽淮南一模)已知{an}中,an=n2+λn,且{an}是递增数列,则实数λ的取值范围是(  )‎ A.(-2,+∞) B.[-2,+∞)‎ C.(-3,+∞) D.[-3,+∞)‎ ‎[解析] ∵{an}是递增数列,∴∀n∈N*,an+1>an,‎ ‎∴(n+1)2+λ(n+1)>n2+λn,‎ 化简得λ>-(2n+1),∴λ>-3.故选C.‎ ‎[答案] C ‎2.(2018·信阳二模)已知数列{an}中,a1=a2=1,an+2=则数列{an}的前20项和为(  )‎ A.1121 B.1122 C.1123 D.1124‎ ‎[解析] 由题意可知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n-1}是首项为1,公差为2的等差数列,故数列{an}的前20项和为+10×1+×2=1123.选C.‎ ‎[答案] C ‎3.(2018·石家庄一模)已知正项数列{an}中,a1=1,且(n+2)a-(n+1)a+anan+1=0,则它的通项公式为(  )‎ A.an= B.an= C.an= D.an=n ‎[解析] 因为(n+2)a-(n+1)a+anan+1=0,所以[(n+2)an+1-(n+1)an]·(an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+1)‎ an=0,即=,‎ 则当n≥2时,an=··…··a1=··…··1=.又∵a1=1也适合,∴an=,故选B.‎ ‎[答案] B ‎4.(2018·广东茂名二模)Sn是数列{an}的前n项和,且∀n∈N*都有2Sn=3an+4,则Sn=(  )‎ A.2-2×3n B.4×3n C.-4×3n-1 D.-2-2×3n-1‎ ‎[解析] ∵2Sn=3an+4,∴2Sn=3(Sn-Sn-1)+4(n≥2),变形为Sn-2=3(Sn-1-2),又n=1时,2S1=3S1+4,解得S1=-4,∴S1-2=-6.∴数列{Sn-2}是等比数列,首项为-6,公比为3.∴Sn-2=-6×3n-1,可得Sn=2-2×3n.故选A.‎ ‎[答案] A ‎5.(2018·河北石家庄一模)若数列{an}满足a1=2,an+1=,则a2018的值为(  )‎ A.2 B.-3 C.- D. ‎[解析] ∵a1=2,an+1=,∴a2==-3,同理可得:a3=-,a4=,a5=2,…,可得an+4=an,则a2018=a504×4+2=a2=-3.故选B.‎ ‎[答案] B ‎6.数列{an}满足a1=2,an+1=a(an>0,n∈N*),则an=(  )‎ A.10n-2 B.10n-1 C.102n-1 D.22n-1‎ ‎[解析] 因为数列{an}满足a1=2,an+1=a(an>0,n∈N*),‎ 所以log2an+1=2log2an,‎ 即=2.‎ 又a1=2,所以log2a1=log22=1.‎ 故数列{log2an}是首项为1,公比为2的等比数列.‎ 所以log2an=2n-1,即an=22n-1.‎ ‎[答案] D 二、填空题 ‎7.(2018·河南新乡三模)若数列{an+1-an}是等比数列,且a1=1,a2=2,a3=5,则an=________.‎ ‎[解析] ∵a2-a1=1,a3-a2=3,∴q=3,‎ ‎∴an+1-an=3n-1,∴当n≥2时,an-a1=a2-a1+a3-a2+…+an-1-an-2+an-an-1=1+3+…+3n-2=,‎ ‎∵a1=1,∴an=.a1=1也适合,∴an=.‎ ‎[答案]  ‎8.已知数列{an}中,a1=3,且点Pn(an,an+1)(n∈N*)在直线4x-y+1=0上,则数列{an}的通项公式为________.‎ ‎[解析] 因为点Pn(an,an+1)(n∈N*)在直线4x-y+1=0上,‎ 所以4an-an+1+1=0.‎ 所以an+1+=4.‎ 因为a1=3,所以a1+=.‎ 故数列是首项为,公比为4的等比数列.‎ 所以an+=×4n-1,故数列{an}的通项公式为an=×4n-1-.‎ ‎[答案] an=×4n-1- ‎9.(2018·山西大同模拟)已知数列{an}的通项公式为an=(-1)n(2n-1)·cos+1(n∈N*),其前n项和为Sn,则S60=________.‎ ‎[解析] 由题意可得,当n=4k-3(k∈N*)时,an=a4k-3=1;当n=4k-2(k∈N*)时,an=a4k-2=6-8k;当n=4k-1(k∈N*)时,an=a4k-1=1;当n=4k(k∈N*)时,an=a4k=8k.∴a4k-3+a4k-2+a4k-1+a4k=8,‎ ‎∴S60=8×15=120.‎ ‎[答案] 120‎ 三、解答题 ‎10.(2018·郑州质检)已知数列{an}的首项a1=1,前n项和Sn,且数列是公差为2的等差数列.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)若bn=(-1)nan,求数列{bn}的前n项和Tn.‎ ‎[解] (1)由已知条件得=1+(n-1)×2=2n-1,‎ ‎∴Sn=2n2-n.‎ 当n≥2时,an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3.‎ 当n=1时,a1=S1=1,而4×1-3=1,∴an=4n-3.‎ ‎(2)由(1)可得bn=(-1)nan=(-1)n(4n-3),‎ 当n为偶数时,‎ Tn=-1+5-9+13-17+…+(4n-3)=4×=2n,‎ 当n为奇数时,n+1为偶数,‎ Tn=Tn+1-bn+1=2(n+1)-(4n+1)=-2n+1.‎ 综上,Tn= ‎11.(2018·南昌市二模)已知数列{an}满足+++…+=n2+n.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)若bn=,求数列{bn}的前n项和Sn.‎ ‎[解] (1)+++…+=n2+n①,‎ ‎∴当n≥2时,+++…+=(n-1)2+n-1②,‎ ‎①-②得,=2n(n≥2),∴an=n·2n+1(n≥2).‎ 又当n=1时,=1+1,a1=4也适合an=n·2n+1,∴an=n·2n+1.‎ ‎(2)由(1)得,bn==n(-2)n,‎ ‎∴Sn=1×(-2)1+2×(-2)2+3×(-2)3+…+n×(-2)n③,‎ ‎-2Sn=1×(-2)2+2×(-2)3+3×(-2)4+…+(n-1)×(-2)n+n×(-2)n+1④,‎ ‎③-④得,3Sn=(-2)+(-2)2+(-2)3+…+(-2)n-n×(-2)n+1‎ ‎=-n×(-2)n+1,‎ ‎∴Sn=-.‎ ‎12.(2018·北京海淀模拟)数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)设bn=,求数列{bn}的前n项和Tn.‎ ‎[解] (1)∵Sn=2an-a1,‎ ‎∴当n≥2时,Sn-1=2an-1-a1,‎ ‎∴an=2an-2an-1,化为an=2an-1.‎ 由a1,a2+1,a3成等差数列得,2(a2+1)=a1+a3,‎ ‎∴2(2a1+1)=a1+4a1,解得a1=2.‎ ‎∴数列{an}是等比数列,首项为2,公比为2.‎ ‎∴an=2n.‎ ‎(2)∵an=2n,∴Sn==2n+1-2,Sn+1=2n+2-2.‎ ‎∴bn===.‎ ‎∴数列{bn}的前n项和 Tn= ‎=.‎
查看更多

相关文章

您可能关注的文档