数学文卷·2018届广西南宁市第八中学高二下学期期末考试(2017-07)无答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学文卷·2018届广西南宁市第八中学高二下学期期末考试(2017-07)无答案

‎2017年春季学期 南宁八中高二年级期考数学(文科)试卷 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. ‎ ‎1.设集合,则 ( )‎ A. B. C. D.‎ ‎2.已知i是虚数单位,若复数z满足zi=1+i,则 ( )‎ A. -2i B. 2i C. -2 D. 2‎ ‎3.极坐标方程ρ=-4cosθ化为直角坐标方程是 (  )‎ A.x-4=0 B.x+4=‎0 C.(x+2)2+y2=4 D.x2+(y+2)2=4‎ ‎4.函数y=f (x)的导函数的图象如图,则函数y=f(x)的图象可能是( )‎ ‎5.某国发生的9.0级地震引发了海啸及核泄漏.核专家为了检测当地动物受核辐射后对身体健康的影响,随机选取了110只羊进行了检测,并将有关数据整理为2×2列联表.‎ 高度辐射 轻微辐射 总计 身体健康 ‎30‎ A ‎50‎ 身体不健康 B ‎10‎ ‎60‎ 总计 C D E 则A,B,C,D的值依次为(  )‎ A.20,80,30,50 B.20,50,80,30‎ C.20, 50,80,110 D.20,80,110,50‎ ‎6.在平面直角坐标系xOy中,点的直角坐标为.若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点的极坐标可以是 ( )‎ A. B. C. D.‎ ‎7 .已知程序框图如右,则输出的为( ) A.7 B‎.8 C.9 D.10‎ ‎8.一颗骰子的六个面上分别标有数字1、2、3、4、5、6,若以连续掷两次骰子分别得到的点数m、n作为P点坐标,则点P落在圆内的概率为 ( )‎ ‎ A. B. C. D.‎ ‎9.已知有极大值和极小值,则的取值范围为( ) ‎ A. B. ‎ C. D.‎ ‎10.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为( )‎ A. B‎.2‎ C. D.2‎ ‎11.已知y=f(x)为R上的连续可导函数,且xf ′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为( )‎ ‎ A.0 B.‎1 C.0或1 D.无数个 ‎12.已知函数f(x)=aln x-bx2的图象在x=1处与直线y=-相切,则函数f(x)在[1,e]上的最大值为(  )‎ A. B. - C.1 D.e 第II卷 二、填空题:本大题共4小题,每小题5分,共20分。‎ ‎13. 曲线y=ex在点A(0,1)处的切线斜率为___________‎ ‎14. 某产品广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应数据:‎ 广告支出 ‎1‎ ‎2‎ ‎3‎ ‎4‎ 销售收入 ‎12‎ ‎28‎ ‎42‎ ‎56‎ 若广告支出费用为9万元,则销售收入约为___________万元。(其中)‎ ‎15.若“x∈{a,3}”是“不等式2x2-5x-3≥0成立”的一个充分不必要条件,则实数a的取值范围是____________‎ ‎16.已知三棱锥PABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为,则球O的表面积为    ‎ 三、解答题:本大题有6小题,共70分,解答应写出文字说明,证明过程或演算步骤。‎ ‎17.(本小题10分) 已知集合A={x||x-a|≤2},B={x |lg(x2+6x+9)>0}.‎ ‎(1)求集合A和∁RB; (2)若A⊆B,求实数a的取值范围 ‎18. (本小题12分) 已知函数. (1)求函数的图象在点处的切线的方程; (2)求函数在区间上的最值. ‎ ‎19.(本小题12分)已知三棱锥P-ABC中,PA⊥平面ABC, AB⊥AC, PA=AC=‎ ‎,N为AB上一点,AB=4AN, M,S分别为PB,BC的中点.‎ ‎(1)证明:CM⊥SN; (2)求SN与平面CMN所成角的大小 ‎20.(本小题12分) 某大学艺术专业的400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],…,[80,90],并整理得到如下频率分布直方图:‎ ‎(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;‎ ‎(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;‎ ‎(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.‎ ‎21.(本小题12分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π].‎ ‎(1)求曲线C的直角坐标方程;‎ ‎(2)在曲线C上求一点D,使它到直线l:(t为参数,t∈R)的距离最短,并求出点D的直角坐标及最短距离.‎ ‎22.(本小题12分)已知函数f(x)=ex-a(x+1).(a≠0)‎ ‎(1)若讨论f(x)的单调性;‎ ‎(2)若f(x)>a2-a,求a的取值范围.‎
查看更多

相关文章

您可能关注的文档