- 2021-06-25 发布 |
- 37.5 KB |
- 9页
![](https://data.61taotao.com/file-convert/2020/10/20/02/59/245d03c70b521fb6d75f1cd3ce1f8625/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/02/59/245d03c70b521fb6d75f1cd3ce1f8625/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/02/59/245d03c70b521fb6d75f1cd3ce1f8625/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】江苏省苏州第一中学2019-2020学年高二下学期期中考试试题
江苏省苏州第一中学2019-2020学年 高二下学期期中考试试题 一、单项选择题(本大题共有8小题,每题5分,共40分) 1.复数(2‒i)i(i是虚数单位)的虚部是( ) A.2i B.2 C.1+2i D.‒2 2.有三对师徒共6个人,站成一排照相,每对师徒相邻的站法共有( ) A.72种 B.48种 C. 54种 D.8种 3.已知随机变量ξ服从正态分布N(0,σ2),P(ξ>2)=0.023,则P(-2≤ξ≤2)=( ) A.0.477 B.0.628 C.0.954 D.0.977 4.从4台甲型和5台乙型电视机中任意取出3台,其中甲型与乙型电视机都要取到,则不同的取法种数为( ) A.40 B.50 C.60 D.70 5.函数的单调递减区间为( ) A. B. C. D. 6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的2´2列联表:( ) 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由χ2=算得,χ2=≈7.8. 附表: P(χ2≥x0) 0.050 0.010 0.001 x0 3.841 6.635 10.828 参照附表,得到的正确结论是( ) A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; C.有99%以上的把握认为“爱好该项运动与性别有关”; D.有99%以上的把握认为“爱好该项运动与性别无关”. 7.设随机变量ξ服从二项分布ξ~B(6,),则P(ξ≤3)等于( ) A. B. C. D. 8.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=80,则a1+a2+a3+a4+a5=( ) A.-32 B.1 C.32 D.1或-32 二、多项选择题(本大题共有4小题,每题5分,共20分) 9.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么概率为的事件是( ) A.至多一件一等品 B.至少一件一等品 C.至多一件二等品 D.至少一件二等品 10.定义在区间上的函数的导函数图象如图所示,则下列结论正确的是( ) A.函数在区间单调递增 B.函数在区间单调递减 C.函数在处取得极大值 D.函数在处取得极小值 11.下列对各事件发生的概率判断正确的是( ) A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为 B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为 C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为 D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是 12.函数,下列结论正确的是( ) A.函数有两个不同零点 B.函数既存在极大值又存在极小值 C.当时,方程有且只有两个实根 D.若时,,则t的最小值为2 三、填空题(本大题共有4小题,每题5分,共20分) 13.已知复数z满足 z(1+i)=i,(i为虚数单位),则|z|为 ▲ . 14.若二项式的展开式中只有第4项的二项式系数最大,则展开式中常数项为 ▲ . 15.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法有 ▲ 种. 16.设函数,其中,若存在唯一的整数,使得,则实数a的取值范围是 ▲ . 四、解答题(本大题共6小题,共70分) 17.(本小题共10分) 已知函数f (x)=x3-2x2+ax (x∈R),在曲线y=f (x)的所有切线中,有且仅有一条切线l与直线y=x垂直.求实数a的值和切线l的方程. 18.(本小题共12分) 设.已知. (1)求n的值; (2)设,其中,求的值. 19.(本小题共12分) 某设备的使用时间x(单位:年)和所支出的维修费用y(单位:万元)有如下统计数据: 使用时间x /年 2 3 4 5 6 维修费用y /万元 2.2 3.8 5.5 6.5 7.0 若由数据知x与y具有线性相关关系. (1)试求线性回归方程; (2)试估计使用年限为10年时的维修费用是多少? 参考公式:线性回归方程中, 20.(本小题共12分) 已知函数f (x)= (a≠0). (1)当a=-1,b=0时,求函数f (x)的极值; (2)当b=1时,若函数f (x)没有零点,求实数a的取值范围. 21.(本小题共12分) 经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A,B,C商品的概率分别为,p1,p2(p1查看更多
相关文章
- 当前文档收益归属上传用户