2017年普通高等学校招生全国统一考试 文科数学(天津卷)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017年普通高等学校招生全国统一考试 文科数学(天津卷)

绝密★启用前 ‎2017年普通高等学校招生全国统一考试(天津卷)‎ 数学(文史类)‎ 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。‎ 答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。‎ 祝各位考生考试顺利!‎ 第Ⅰ卷 注意事项:‎ ‎1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。‎ ‎2.本卷共8小题,每小题5分,共40分。‎ 参考公式:‎ ‎·如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).‎ ‎·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.‎ ‎·球的体积公式.其中表示球的半径.‎ 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)设集合,则 ‎(A)(B)(C)(D)‎ ‎(2)设,则“”是“”的 ‎(A)充分而不必要条件(B)必要而不充分条件 ‎(C)充要条件(D)既不充分也不必要条件 ‎(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 ‎(A)(B)(C)(D)‎ ‎(4)阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为 ‎(A)0 (B)1(C)2(D)3‎ ‎(5)已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为 ‎(A)(B)(C)(D)‎ ‎(6)已知奇函数在上是增函数.若,则的大小关系为 ‎(A)(B)(C)(D)‎ ‎(7)设函数,其中.若且的最小正周期大于,则 ‎(A)(B)(C)(D)‎ ‎(8)已知函数设,若关于的不等式在上恒成立,则的取值范围是 ‎(A)(B)(C)(D)‎ 第Ⅱ卷 注意事项:‎ ‎1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。‎ ‎2.本卷共12小题,共110分。‎ 二. 填空题:本大题共6小题,每小题5分,共30分.‎ ‎(9)已知,i为虚数单位,若为实数,则a的值为 .‎ ‎(10)已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .‎ ‎(11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .‎ ‎(12)设抛物线的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若,则圆的方程为 .‎ ‎(13)若a,,,则的最小值为 .‎ ‎(14)在△ABC中,,AB=3,AC=2.若,(),且,则的值为 .‎ 三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.‎ ‎(15)(本小题满分13分)‎ 在中,内角所对的边分别为.已知,.‎ ‎(I)求的值;‎ ‎(II)求的值.‎ ‎(16)(本小题满分13分)‎ 电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:‎ 连续剧播放时长(分钟)‎ 广告播放时长(分钟)‎ 收视人次(万)‎ 甲 ‎70‎ ‎5‎ ‎60‎ 乙 ‎60‎ ‎5‎ ‎25‎ 已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,表示每周计划播出的甲、乙两套连续剧的次数.‎ ‎(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;‎ ‎(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?‎ ‎(17)(本小题满分13分)‎ 如图,在四棱锥中,平面,,,,,,.‎ ‎(I)求异面直线与所成角的余弦值;‎ ‎(II)求证:平面;‎ ‎(Ⅲ)求直线与平面所成角的正弦值.‎ ‎(18)(本小题满分13分)‎ 已知为等差数列,前n项和为,是首项为2的等比数列,且公比大于0,‎ ‎.‎ ‎(Ⅰ)求和的通项公式;‎ ‎(Ⅱ)求数列的前n项和.‎ ‎(19)(本小题满分14分)‎ 设,.已知函数,.‎ ‎(Ⅰ)求的单调区间;‎ ‎(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,‎ ‎(i)求证:在处的导数等于0;‎ ‎(ii)若关于x的不等式在区间上恒成立,求b的取值范围.‎ ‎(20)(本小题满分14分)‎ 已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为.‎ ‎(I)求椭圆的离心率;‎ ‎(II)设点在线段上,,延长线段与椭圆交于点,点,在轴上,,且直线与直线间的距离为,四边形的面积为.‎ ‎(i)求直线的斜率;‎ ‎(ii)求椭圆的方程.‎ ‎2017年普通高等学校招生全国统一考试(天津卷)答案 ‎(1)B (2)B (3)C (4)C ‎ ‎(5)D (6)C (7)A (8)A ‎(9)−2 (10)1 (11)‎ ‎(12) (13)4 (14)‎ ‎(15)(Ⅰ)解:由,及,得.‎ 由,及余弦定理,得.‎ ‎(Ⅱ)解:由(Ⅰ),可得,代入,得.‎ 由(Ⅰ)知,A为钝角,所以.于是,‎ ‎,故 ‎.‎ ‎16.(Ⅰ)解:由已知,满足的数学关系式为即 该二元一次不等式组所表示的平面区域为图1中的阴影部分:‎ ‎(Ⅱ)解:设总收视人次为万,则目标函数为.‎ 考虑,将它变形为,这是斜率为,随变化的一族平行直线.为直线在轴上的截距,当取得最大值时,的值最大.又因为满足约束条件,所以由图2可知,当直线经过可行域上的点M时,截距最大,即最大.‎ 解方程组得点M的坐标为.‎ 所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.‎ ‎(17)本小题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.‎ ‎(Ⅰ)解:如图,由已知AD//BC,故或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.‎ 所以,异面直线AP与BC所成角的余弦值为.‎ ‎(Ⅱ)证明:因为AD⊥平面PDC,直线PD平面PDC,所以AD⊥PD.又因为BC//AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.‎ ‎(Ⅲ)解:过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.‎ 因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以为直线DF和平面PBC所成的角.‎ 由于AD//BC,DF//AB,故BF=AD=1,由已知,得CF=BC–BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得,在Rt△DPF中,可得.‎ 所以,直线AB与平面PBC所成角的正弦值为.‎ ‎18.(Ⅰ)解:设等差数列的公差为,等比数列的公比为.由已知,得,而,所以.又因为,解得.所以,.‎ 由,可得.由,可得,联立①②,解得,由此可得.‎ 所以,的通项公式为,的通项公式为.‎ ‎(Ⅱ)解:设数列的前项和为,由,有 ‎,‎ ‎,‎ 上述两式相减,得 ‎.‎ 得.‎ 所以,数列的前项和为.‎ ‎19.【解析】(I)由,可得 ‎,‎ 令,解得,或.由,得.‎ 当变化时,,的变化情况如下表:‎ 所以,的单调递增区间为,,单调递减区间为.‎ ‎(II)(i)因为,由题意知,‎ 所以,解得.‎ 所以,在处的导数等于0.‎ ‎(ii)因为,,由,可得.‎ 又因为,,故为的极大值点,由(I)知.‎ 另一方面,由于,故,‎ 由(I)知在内单调递增,在内单调递减,‎ 故当时,在上恒成立,从而在上恒成立.‎ 由,得,.‎ 令,,所以,‎ 令,解得(舍去),或.‎ 因为,,,故的值域为.‎ 所以,的取值范围是.‎ ‎(20)(Ⅰ)解:设椭圆的离心率为e.由已知,可得.又由,可得,即.又因为,解得.‎ 所以,椭圆的离心率为.‎ ‎(Ⅱ)(ⅰ)依题意,设直线FP的方程为,则直线FP的斜率为.‎ 由(Ⅰ)知,可得直线AE的方程为,即,与直线FP的方程联立,可解得,即点Q的坐标为.‎ 由已知|FQ|=,有,整理得,所以,即直线FP的斜率为.‎ ‎(ii)解:由,可得,故椭圆方程可以表示为.‎ 由(i)得直线FP的方程为,与椭圆方程联立消去,整理得,解得(舍去),或.因此可得点,进而可得,所以.由已知,线段的长即为与这两条平行直线间的距离,故直线和都垂直于直线.‎ 因为,所以,所以的面积为 ‎,同理的面积等于,由四边形的面积为,得,整理得,又由,得.‎ 所以,椭圆的方程为.‎
查看更多

相关文章

您可能关注的文档