2017-2018学年贵州省遵义航天高级中学高二上学期期末考试数学(文)试题 Word版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017-2018学年贵州省遵义航天高级中学高二上学期期末考试数学(文)试题 Word版

‎2017-2018学年贵州省遵义航天高级中学高二上学期期末考试数学(文科)‎ ‎(试题满分:150分 考试时: 120分钟) ‎ 一、选择题(每小题5分,共60分。每小题只有一个选项符合题意)‎ ‎1. 设集合,,若,则的取值范围是 A. B. C. D. ‎ ‎2.下列双曲线中,焦点在轴上且渐近线方程为的是 ‎ A. B. C. D. ‎ ‎3.已知,则=‎ A. B. C. D. ‎ ‎4. 下列说法正确的是 A.,则的充分条件是 B.若 ,则的充要条件是 C.对任意,的否定是存在,‎ D.是一条直线,,是两个不同的平面,若,,则 ‎5.体积为的正方体的顶点都在同一球面上,则该球面的表面积为 A. B. C. D. ‎ ‎6.设为抛物线的焦点,曲线与交于点,轴,则 A. B. C. D. ‎ ‎7. 圆的圆心到直线的距离为,则 A. B. C. D. ‎ ‎8.已知为等差数列的前项和,若,则=‎ A. B. C. D. ‎ ‎9. 若执行右侧的程序框图,当输入的的值为时,输出的的值为,则空白判断框中的条件可能为(  )‎ A. B. C. D. ‎ ‎10.如图,网格纸上小正方形的边长为,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为 A. B. C. D. ‎ ‎11.设函数,则是 A. 奇函数,且在上是增函数 B. 奇函数,且在上是减函数 C. 偶函数,且在上是增函数 D. 偶函数,且在上是减函数 ‎12.过抛物线的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,则到直线的距离为 A. B. C. D.‎ 二、填空题:本大题共4小题,每小题5分,共20分.‎ ‎13.已知向量.若向量与垂直,则= ‎ ‎14.若满足约束条件,则的最小值为 ______ ‎ ‎15. 函数的最大值为 ‎ ‎16.平面直角坐标系中,双曲线的渐近线与抛物线交于点.若的垂心为的焦点,则的离心率为 ‎ 三、解答题(本题6小题,第17小题10分,第18-22小题,每小题12分, 共70分。解答应写出文字说明、证明过程或演算步骤)‎ ‎17.(本小题满分10分)‎ 已知分别是内角的对边,.‎ ‎(I)若,求; ‎ ‎(II)若,且, 求的面积.‎ ‎18.(本小题满分12分)‎ 为数列的前项和,已知,.‎ ‎(I)求的通项公式;‎ ‎(II)设,求数列的前项和.‎ ‎19.(本小题满分12分)‎ 某大学艺术专业名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了名学生,记录他们的分数,将数据分成组:,,…,,并整理得到如下频率分布直方图:‎ ‎(I)从总体的 名学生中随机抽取一人,估计其分数小于的概率;‎ ‎(II)已知样本中分数小于的学生有人,试估计总体中分数在区间内的人数;‎ ‎(III)已知样本中有一半男生的分数不小于,且样本中分数不小于的男女生人数相等.试估计总体中男生和女生人数的比例.‎ ‎20.(本小题满分12分)‎ 如图所示,正三棱柱的高为,是的中点,是的中点 ‎(I)证明:;‎ ‎(II)若三棱锥的体积为,求该正三棱柱的底面边长.‎ ‎21(本小题满分12分)‎ 中心在原点的双曲线的右焦点为,渐近线方程为.‎ ‎(I)求双曲线的方程;‎ ‎(II)直线与双曲线交于两点,试探究,是否存在以线段为直径的圆过原点.若存在,求出的值,若不存在,请说明理由. ‎ ‎22.(本小题满分12分)‎ 已知函数;‎ ‎(I)当时,求函数的最值;‎ ‎(II)如果对任意的,不等式恒成立,求实数的取值范围.‎ 遵义航天高级中学2017——2018年度第一学期期末考试 高二数学文科答案 一、选择题 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ A B D D C D A C B B A C 二、填空题 ‎13、 14、 15、 16、‎ ‎17、(I),由正弦定理得:;‎ ‎,‎ 由余弦定理得:‎ ‎(II)由(I)可得:,‎ ‎,解得.‎ ‎.‎ ‎18、(I)当时,,因为,所以.‎ 当时,,‎ 即,因为,所以.‎ 所以数列是首项为,公差为的等差数列,‎ 所以;‎ ‎(II)由(I)知,‎ 所以数列前项和为:‎ ‎.‎ ‎19、(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为 ‎,所以样本中分数小于70的频率为.‎ 所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.‎ ‎(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.‎ 所以总体中分数在区间内的人数估计为.‎ ‎(Ⅲ)由题意可知,样本中分数不小于70的学生人数为,‎ 所以样本中分数不小于70的男生人数为.‎ 所以样本中的男生人数为,女生人数为,男生和女生人数的比例为.‎ 所以根据分层抽样原理,总体中男生和女生人数的比例估计为.‎ ‎20、(Ⅰ)证明:如图,连接AB1,AC1, ……………………(1分)‎ 易知D是AB1的中点,‎ 又E是B1C1的中点,‎ 所以在中,DE//AC1, ………………………(3分)‎ 又DE平面ACC1A1,AC1平面ACC1A1, ‎ 所以DE//平面ACC1A1. …………………………………………………………(5分)‎ ‎(Ⅱ)解:, ……………………………………………………(6分)‎ D是AB1的中点,‎ D到平面BCC1B1的距离是A到平面BCC1B1的距离的一半, ‎ 如图,作AFBC交BC于F,由正三棱柱的性质,易证AF平面BCC1B1,‎ 设底面正三角形边长为,则三棱锥D−EBC的高h=AF=, …………(9分)‎ ‎,所以, ………………(11分)‎ 解得. ‎ 所以该正三棱柱的底面边长为2. …………………………………………(12分)‎ ‎21、(Ⅰ)设双曲线的方程为,则有…(2分)‎ 得,所以双曲线方程为. ……………………………(4分)‎ ‎(Ⅱ)由得, ……………………………(5分)‎ 依题意有 解得且,① ………………………………………………………(6分)‎ 且,, ……………………………………………(7分)‎ 设,,‎ 依题意有,所以, ……………………………(8分)‎ 又, ………………………………(9分)‎ 所以,化简得, …………………………………(11分)‎ 符合①,所以存在这样的圆. ……………………………………………………(12分)‎ ‎22、(Ⅰ)‎ ‎ 又在上单调递减,‎ ‎,;‎ ‎(Ⅱ)由,得 令 所以对恒成立.‎ ①当时,;‎ ②当时,,令 由于在递减,在递增.‎ 所以,则;‎ 综上知.‎
查看更多

相关文章

您可能关注的文档