陕西省榆林市高新完全中学2020届高三月考(一)数学(文)试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

陕西省榆林市高新完全中学2020届高三月考(一)数学(文)试题

榆林市高新完全中学2020届高三月考(一)‎ 数学(文科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.‎ 第Ⅰ卷 一、选择题(共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项符合要求.)‎ ‎1. 已知集合,集合,则=( )‎ A. B. C. D. ‎ ‎2. 若复数是纯虚数,则在复平面内对应的点在( )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎ ‎3. 在平行四边形中,,,则的值为( )‎ A. B. C. D.‎ ‎4. 定义运算,则函数的图象大致为( )‎ A. B. C. D.‎ ‎5.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=‎10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )‎ A. B. C. D.‎ ‎6. 若是的充分不必要条件,则是的( )‎ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎7. 阅读右边程序框图,为使输出的数据为31,‎ 则①处应填的数字为( )‎ A.3 B.4 ‎ C.5 D.6‎ ‎8. 已知满足,则的取值范围为( )‎ A. B. ‎ C. D.‎ ‎9. 抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为(1,1),则直线的方程为( )‎ A. B. C. D. ‎ ‎10. 已知变量与变量的取值如下表所示,且,则由该数据算得的线性回归方程可能是( )‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎2.5‎ ‎6.5‎ A. B. C. D.‎ ‎11. 已知点,若点在曲线上运动,则面积的最小值为( )‎ A.6 B.‎3 C. D. ‎ ‎12. 函数是上的偶函数,,当时,,则函数的零点个数为( )‎ A.10 B.‎8 ‎C.5 D.3 ‎ 第Ⅱ卷 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)‎ ‎13. 函数恒过点______.‎ ‎14. 在平面直角坐标系中,已知的顶点和,若顶点在双曲线的左支上,则=______.‎ ‎15. 在直三棱柱内有一个与其各面都相切的球,若,,,则球的表面积为______.‎ ‎16. 在数列中,,,则数列的通项公式______.‎ 三、 解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每 道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)‎ ‎17.(本小题满分12分)从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于‎160 cm和‎184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.‎ ‎(1) 由频率分布直方图估计该校高三年级男生身高的中位数;‎ ‎(2) 在这50名男生身高不低于‎176 cm的人中任意抽取2人,则恰有一人身高在[180,184]内的概率.‎ ‎18.(本小题满分12分)已知函数 ‎(1) 当时,求函数的值域;‎ ‎(2) 的角的对边分别为且 求边上的高的最大值.‎ ‎19. (本小题满分12分)等腰梯形中,,是的中点.将沿折起后,使二面角成直二面角,设是的中点,是棱的中点.‎ ‎(1) 求证:;‎ ‎(2) 求证:平面平面;‎ ‎(3) 判断能否垂直于平面,并说明理由.‎ ‎20.(本小题满分12分)如图所示,设椭圆的左右焦点分别为,离心率是直线上的两个动点,且满足.‎ ‎(1) 若,求的值;‎ ‎(2) 证明:当取最小值时,与共线.‎ ‎21. (本小题满分12分)设函数,.‎ ‎(1) 求函数最大值;‎ ‎(2) 求证:恒成立.‎ 请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.‎ ‎22.(本小题满分10分)【选修4−4:坐标系与参数方程】‎ 已知直线的参数方程:(为参数)和圆的极坐标方程:‎ ‎(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;‎ ‎(2)已知点,直线与圆相交于、两点,求的值.‎ ‎23.(本小题满分10分)【选修4−5:不等式选讲】‎ 已知函数,(其中)‎ ‎(1)求函数的最小值;‎ ‎(2)若,求证:.‎ 数学(文科)参考答案 一、选择题(本大题共12小题,每小题5分,共60分)‎ 题 号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答 案 C B A A D B C D A A B C 二、填空题(本大题共4小题,每小题5分,共20分)‎ ‎13.(4,1),(6,1) 14. 15. 16. ‎ 三、解答题(本大题共6个小题,共70分)‎ ‎17.(本小题满分12分)‎ ‎6解:(1)由频率分布直方图,经过计算该校高三年级男生身高的中位数为168.25 (4分)‎ ‎(2)由频率分布直方图知,后2组频率为(0.02+0.01)×4=0.12,人数为0.12×50=6,即这50名男生身高在‎172 cm以上(含‎172 cm)的人数为6.(8分)‎ 身高介于[176,180]的有4人,用1,2,3,4表示, 身高介于[180,184]的有2人,用a,b表示,从中任取2人的基本事件有(1,2)(1,3)(1,4)(1,a)(1,b)(2,3)(2,4)(2,a)(2,b)(3,4)(3,a)(3,b)(4,a)(4,b)(a,b). 恰有一人身高在[180,184]内的基本事件有(1,a)(1,b)(2,a)(2,b)(3,a)(3,b)(4,a)(4,b).‎ 所以,恰有一人身高在[180,184]内的概率为(12分)‎ ‎18.(本小题满分12分)‎ 解:(1)=‎ ‎ ‎ 函数的值域为(6分)‎ ‎(2) ‎ ‎ ‎ ‎ ‎ ‎ 的最大值为(12分)‎ ‎19.(本小题满分12分)‎ ‎(1)证明:设AE中点为M,‎ ‎∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点,‎ ‎∴△ABE与△ADE都是等边三角形.‎ ‎∴BM⊥AE,DM⊥AE.‎ ‎∵BM∩DM=M,BM、DM⊂平面BDM,∴AE⊥平面BDM.‎ ‎∵BD⊂平面BDM,∴AE⊥BD.(4分)‎ ‎ (2)证明:连结CM交EF于点N,∵MEFC,‎ ‎∴四边形MECF是平行四边形.∴N是线段CM的中点.‎ ‎∵P是BC的中点,∴PN∥BM.‎ ‎∵BM⊥平面AECD,∴PN⊥平面AECD.‎ 又∵PN⊂平面PEF,∴平面PEF⊥平面AECD.(8分)‎ ‎(3)DE与平面ABC不垂直.‎ 证明:假设DE⊥平面ABC,则DE⊥AB,‎ ‎∵BM⊥平面AECD.∴BM⊥DE.‎ ‎∵AB∩BM=B,AB、BM⊂平面ABE,∴DE⊥平面ABE.‎ ‎∴DE⊥AE,这与∠AED=60°矛盾.‎ ‎∴DE与平面ABC不垂直.(12分)‎ ‎20.(本小题满分12分)‎ 解:由e=,得b=c=a,所以焦点F1(-a,0),F2(a,0),直线l的方程为x=a,设M(a,y1),N(a,y2),‎ ‎ (1)∵||=||=2,∴a2+y=20,a2+y=20,消去y1,y2,得a2=4,故a=2,b=.(6分)‎ ‎(2)|MN|2=(y1-y2)2=y+y-2y1y2≥-2y1y2-2y1y2=-4y1y2=‎6a2.‎ 当且仅当y1=-y2=a或y2=-y1=a时,|MN|取最小值a,‎ 此时,+=(a,y1)+(a,y2)=(‎2a,y1+y2)=(‎2a,0)=2,故+与 共线.(12分)‎ ‎21.(本小题满分12分)‎ 解:(1)‎ 令解得 当时,时.‎ 函数在上单调递增,在上单调递减 ‎(6分)‎ ‎(2)而函数在区间上单调递增 恒成立(12分)‎ ‎22.(本小题满分10分)‎ 解:(1)消去参数,得直线的普通方程为,‎ 将两边同乘以得,,‎ ‎∴圆的直角坐标方程为;‎ ‎(2)经检验点在直线上,可转化为①,‎ 将①式代入圆的直角坐标方程为得,‎ 化简得,‎ 设是方程的两根,则,,‎ ‎∵,∴与同号,‎ 由的几何意义得.‎ ‎23.(本小题满分10分)‎ 解: (1)‎ ‎(5分)‎ ‎(2)证明:为要证 只需证, 即证,‎ 也就是,即证,即证,‎ ‎∵,‎ ‎∴,故即有,‎ 又 由可得成立,‎ ‎∴ 所求不等式成立.(10分)‎
查看更多

相关文章

您可能关注的文档