- 2021-06-23 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年高考数学(理)二轮复习讲练测 专题25 圆锥曲线的“三定”与探索性问题(练)(原卷版)
专题25 圆锥曲线的“三定”与探索性问题 1.【2019年高考全国Ⅲ卷理数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B. (1)证明:直线AB过定点: (2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积. 2.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1). (1)求抛物线C的方程及其准线方程; (2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点. 3. 【2018年北京卷理】已知抛物线:经过点.过点的直线与抛物线 有两个不同的交点,,且直线交轴于,直线交轴于. (1)求直线的斜率的取值范围; (2)设为原点,,,求证:为定值. 4.【2018年上海卷】设常数.在平面直角坐标系中,已知点,直线:,曲线:.与轴交于点、与交于点.、分别是曲线与线段上的动点. (1)用表示点到点距离; (2)设,,线段的中点在直线,求的面积; (3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由. 【例】(2017·全国卷Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上。 (1)求C的方程。 (2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为-1,证明:l过定点。 5.(2017新课标Ⅱ)设为坐标原点,动点在椭圆:上,过做轴的垂线,垂足为,点满足. (1)求点的轨迹方程; (2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点. 2.练模拟 1、已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点. (Ⅰ)求椭圆的方程,并求点的坐标(用,表示); (Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由. 2.【江苏省泰州姜堰中学2020届高三上期中】已知椭圆C:的左右顶点为A、B,右焦点为F,一条准线方程是,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点R为PQ的中点 求椭圆C的标准方程; 直线PB交直线于点M,记直线PA的斜率为,直线FM的斜率为,求证:为定值; 3.【黑龙江省大庆市第一中学2020届高三模拟】已知抛物线的焦点为,直线与轴的交点为,与抛物线的交点为,且. (1)求的值; (2)已知点为上一点,,是上异于点的两点,且满足直线和直线的斜率之和为,证明直线恒过定点,并求出定点的坐标. 4.如图,已知双曲线:()的右焦点,点分别在 的两条渐近线上,轴,∥(为坐标原点). (1)求双曲线的方程; (2)过上一点的直线与直线相交于点,与直线相交于点,证明:当点在上移动时,恒为定值,并求此定值. 5、【2020大连高三期末】已知过点(2,0)的直线l1交抛物线C:y2=2px(p>0)于A,B两点,直线l2:x=-2交x轴于点Q. (1)设直线QA,QB的斜率分别为k1,k2,求k1+k2的值; (2)点P为抛物线C上异于A,B的任意一点,直线PA,PB交直线l2于M,N两点,·=2,求抛物线C的方程. 3.练原创 1、在直角坐标系中,曲线:与直线交与,两点,则轴上是否存在点,使得当变动时,总有?说明理由. 2、设椭圆的右焦点为,过点且不与轴垂直的直线与交于,两点,点的坐标为.设为坐标原点,求证为定值. 3、已知椭圆 ,分别是其左、右焦点。 (1)点是椭圆上除长轴端点外的任一点,连接.设的角平分线交的长轴于点,求的取值范围; (2)在(1)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点.设直线的斜率分别为,若,试证明为定值,并求出这个定值. 4.已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有,若直线,且和有且只有一个公共点。 (1)证明直线过定点,并求出定点坐标; (2)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。 5.如图所示,在平面直角坐标系中,已知椭圆:,过点的动直线与椭圆相交于两点,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由.查看更多