- 2021-06-23 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学文卷·2018届湖北省重点高中联考协作体高二下学期期中考试(2017-04)
2017年春季湖北省重点高中联考协作体期中考试 高二数学文科试卷(A卷) 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.抛物线的焦点坐标是( ) A. B. C. D. 2.设,则“”是“”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.已知双曲线的离心率为4,则双曲线的渐近线方程为( ) A. B. C. D. 4.某厂将原油精炼为汽油,需对原油进行冷却和加热,如果第小时,原油温度(单位:)为,那么原油温度的瞬时变化率的最小值为( ) A. B.0 C. -1 D.8 5.天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 则这三天中恰有两天下雨的概率近似为( ) A. B. C. D. 6.我国古代数学名著《九章算术》中的更相减损术的思路与下面的程序框图相似,执行该程序框图,若输入的分别为15,27,则输出的等于( ) A.2 B.3 C. 4 D.5 7.椭圆的焦距为,则的值为( ) A.或 B.44 C. 9或23 D.或 8.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是( ) A. B. C. D. 9.已知函数的图像如图所示,就的导函数,则下列数值排序正确的是( ) A. B. C. D. 10. 已知两圆,动圆在圆内部且和圆内切,和圆外切,则动圆圆心的轨迹方程为( ) A. B. C. D. 11.如果方程表示双曲线,则下列方程所表示的椭圆中,与该双曲线共焦点的是( ) A. B. C. D. 12.定义在上的函数满足,且对任意都有,则不等式的解集为( ) A. B. C. D. 第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4小题,每小题5分,满分20分) 13.命题“”的否定形式为 . 14.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙依次有放回地随机抽取1个小球,取到小球的编号分别为.在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,则甲、乙两人成为“好朋友”的概率为 . 15.函数有两个零点,则实数的取值范围为 . 16.已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和的距离之和的最小值为 . 三、解答题 (本大题共6小题,共70分,其中17题为10分,其余为12分) 17.已知,命题曲线表示的是焦点在轴上的椭圆,命题对,直线与圆恒有公共点.若命题“”是假命题,命题“”是真命题,求实数的取值范围. 18.已知函数. (1)若函数在区间单调递增,求实数的取值范围; (2)证明:恒成立. 19.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在. (1)求居民收入在的频率; (2)根据频率分布直方图算出样本数据的中位数、平均数及其众数; (3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为的人中抽取多少人? 20.某商店新进一批商品,每件进价5元,据市场调查,当每件售价14元时,每星期可卖出75件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件. (1)将一星期的商品销售利润表示成的函数; (2)如何定价才能使一个星期的商品销售利润最大? 21. 已知椭圆的方程为,函数在处有极大值,点. (1)求椭圆的方程; (2)设直线,是否存在实数,使直线与椭圆有两个不同的交点,且,若存在,求出的值;若不存在,请说明理由. 22.设函数,表示导函数. (1)当时,求函数在点处的切线方程; (2)讨论函数的单调区间; (3)对于曲线上的不同两点,求证:存在唯一的,使直线的斜率等于. 试题答案 选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D【来源:全,品…中&高*考+网】 B A B B B C D A D D C 13. 14. 15. 16. 2 17.解:P真:, 直线过定点,真:,或 命题 “”是假命题,命题 “”是真命题,和一真一假 当真假时, 当假真时, 综上所述, 18. 解:(1),在区间单调递增,在区间恒成立,即而函数在区间单调递增, (2)由(1)得,当时, 时,单调递减,在区间单调递增,,(当且仅当时等号成立)又即. 19.解:(1)居民收入在的频率为. (2) 中位数为, 平均数为, 其众数. (3)在月收入为的人中抽取人. 20. 解:(Ⅰ)依题意,设,由已知有,从而 【来源:全,品…中&高*考+网】 (Ⅱ) 由得,由得或 可知函数在上递减,在递增,在上递减 从而函数取得最大值的可能位置为或是 当时, 当时, 答:商品每件定价为9元时,可使一个星期的商品销售利润最大. 21.解(1),, 区间单调递增,在区间单调递减,,即得,即椭圆的方程为. (2) 设为的中点,,依题意知, ,两式相减得,而,又点在直线上,若,,即,得,此时点在椭圆内,满足题意,即存在实数满足题意. 22.解(1)时,,,,在点处的切线方程为; (2),的定义域为 当时,在区间单调递增; 当时,在区间单调递增,在区间单调递减. (3)∵,∴,化简得 即,且唯一. 设,则, 再设,,∴, ∴在是增函数, ∴,同理, ∴方程在有解. ∵一次函数在是增函数, ∴方程在有唯一解,命题成立. 查看更多