- 2021-06-23 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2013年高考数学(理科)真题分类汇编N单元 选修4系列
N单元 选修4系列 N1选修4-1 几何证明选讲 图1-6 22.N1[2013·新课标全国卷Ⅰ] 选修4-1:几何证明选讲如图1-6所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D. (1)证明:DB=DC; (2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径. 22.解:(1)证明:联结DE,交BC于点G. 由弦切角定理得,∠ABE=∠BCE. 而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE. 又因为DB⊥BE,所以DE为直径,∠DCE=90°, 由勾股定理可得DB=DC. (2)由(1)知,∠CDE=∠BDE,DB=DC, 故DG是BC的中垂线,所以BG=. 设DE的中点为O,联结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°, 所以CF⊥BF,故Rt△BCF外接圆的半径等于. 15.N1[2013·广东卷] (几何证明选讲选做题)如图1-3所示,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=________. 图1-3 15.2 [解析] 由题知∠ACB=90°,又BC=CD, ∴AD=AB=6,∠BAC=∠CAE,∴AE=AD-ED=4. ∵CE为切线,∴∠ACE=∠ABC. ∴∠ACE+∠CAE=∠ABC+∠BAC=90°. 在△ACD中,∠ACD=90°,CE⊥AD, ∴CD2=ED·DA=12,解得CD=2 ,故BC=2 . 图1-5 15.N1[2013·湖北卷] (选修4-1:几何证明选讲) 如图1-5所示,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为________. 15.8 [解析] 设AB=6k,则AD=2k,DO=k,CO=3k,设EO=x,由射影定理:DO2=EO·CO,k2=x·3k,x=,故==8. 图1-3 11.N1[2013·湖南卷] 如图1-2所示,在半径为的⊙O中,弦AB,CD相交于点P.PA=PB=2,PD=1,则圆心O到弦CD的距离为________. 11. [解析] 由相交弦定理可知PA·PB=PC·PD,得PC=4,故弦CD=5,又半径r=,记圆心O到直线CD的距离为d,则d2+=7,即d2=,故d=. 21.N1[2013·江苏卷] A.[选修4-1:几何证明选讲] 如图1-1所示,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC. 求证:AC=2AD. 图1-1 证明:联结OD,因为AB和BC分别与圆O相切于点D,C, 所以∠ADO=∠ACB=90°. 又因为∠A=∠A,所以Rt△ADO∽Rt△ACB, 所以=. 又BC=2OC=2OD. 故AC=2AD. 11.N1[2013·北京卷] 如图1-2,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD∶DB=9∶16,则PD=________,AB=________. 图1-2 11. 4 [解析] 由于PD∶DB=9∶16,设PD=9a,则DB=16a,PB=25a,根据切割线定理有PA2=PD·PB,∴a=,∴PD=,PB=5.又∵△PBA为直角三角形,∴AB2+AP2=PB2,∴AB=4. 22.N1[2013·辽宁卷] 选修4-1:几何证明选讲 如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,联结AE,BE.证明: (1)∠FEB=∠CEB; (2)EF2=AD·BC. 图1-8 22.证明:(1)由直线CD与⊙O相切,得∠CEB=∠EAB. 由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=. 又EF⊥AB,得∠FEB+∠EBF=, 从而∠FEB=∠EAB. 故∠FEB=∠CEB. (2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边, 得Rt△BCE≌Rt△BFE,所以BC=BF. 类似可证,Rt△ADE≌Rt△AFE,得AD=AF. 又在Rt△AEB中,EF⊥AB,故EF2=AF·BF, 所以EF2=AD·BC. N1[2013·陕西卷] B.(几何证明选做题)如图1-4,弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线相交于点P,已知PD=2DA=2,则PE=________. 图1-4 [解析] 利用已知可得,∠BCE=∠PED=∠BAP,可得△PDE∽△PEA,可得=,而PD=2DA=2,则PA=3,则PE2=PA·PD=6,PE=. 15.C8,E8,N1[2013·四川卷] 设P1,P2,…,Pn为平面α内的n个点,在平面α内的所有点中,若点P到P1,P2,…,Pn点的距离之和最小,则称点P为P1,P2,…,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题: ①若A,B,C三个点共线,C在线段AB上,则C是A,B,C的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A,B,C,D共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号) 15.①④ [解析] 对于①,如果中位点不在直线AB上,由三角形两边之和大于第三边可知与题意矛盾.而当中位点在直线AB上时,如果不与C重合,则|PA|+|PB|+|PC|>|PA|+|PB|也不符合题意,故C为唯一的中位点,①正确; 对于②,我们取斜边长为4的等腰直角三角形,此时,斜边中点到三个顶点的距离均为2,和为6;而我们取斜边上中线的中点,该点到直角顶点的距离为1,到两底角顶点的距离均为,显然2 +1<6,故该直角三角形的斜边中点不是中位点,②错误; 对于③,当A,B,C,D四点共线时,不妨设他们的顺序就是A,B,C,D,则当点P在B,C之间运动时,点P到A,B,C,D四点的距离之和相等且最小,即这个时候的中位点有无穷多个,③错误; 对于④,同样根据三角形两边之和大于第三边的性质,如果中位点不在对角线的交点上,则距离之和肯定不是最小的,④正确. 13.N1[2013·天津卷] 如图1-2所示,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F,若AB=AC,AE=6,BD=5,则线段CF的长为________. 图1-2 13. [解析] 由切割线定理可得EA2=EB·ED,有EB=4,ED=9. 因为AB=AC,所以∠ABC=∠C=∠ADB, 由弦切角定理可得∠EAB=∠ADB,所以∠EAB=∠ABC,故AE∥BC.又BD∥AC, 所以四边形AEBC是平行四边形,可得BC=AE=6,又由平行线分线段成比例定理可得=,因为AE=6,所以BF=,故CF=BC-BF=. 22.N1[2013·新课标全国卷Ⅱ] 选修4-1:几何证明选讲: 如图1-5,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证明:CA是△ABC外接圆的直径; (2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值. 图1-5 22.解:(1)证明:因为CD为△ABC外接圆的切线,所以∠DCB=∠A,由题设知=, 故△CDB∽△AEF,所以∠DBC=∠EFA. 因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径. (2)联结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2. 而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为. 1-6 14.N1[2013·重庆卷] 如图1-6所示,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为________. 14.5 [解析] 联结CE.由弦切角定理知∠BCD=∠A=60°,所以在Rt△BCD中,∠CBD=30°.又在Rt△ABC中,∠ABC=30°,AC=AB=10,所以CE=AC=10.在Rt△ CDE中,∠DCE=30°,故DE=CE=5. N2 选修4-2 矩阵 21.[2013·福建卷] N2(Ⅰ)选修4-2:矩阵与变换 已知直线l:ax+y=1在矩阵A=)对应的变换作用下变为直线l′:x+by=1. (1)求实数a,b的值; (2)若点P(x0,y0)在直线l上,且A)=),求点P的坐标. (Ⅰ)解:(1)设直线l:ax+y=1上任意点M(x,y)在矩阵A对应的变换作用下的像是M′(x′,y′). 由)=)))=),得 又点M′(x′,y′)在l′上,所以x′+by′=1, 即x+(b+2)y=1. 依题意得解得 (2)由A)=),得解得y0=0. 又点P(x0,y0)在直线l上,所以x0=1. 故点P的坐标为(1,0). N2[2013·江苏卷] B.[选修4-2:矩阵与变换] 已知矩阵A=-1,0) 0,2),B=1,0) 2,6),求矩阵A-1B. 解:设矩阵A的逆矩阵为a,c) b,d), 则-1,0) 0,2)a,c) b,d)=1,0) 0,1). 即-a,2c) -b,2d)=1,0) 0,1), 故a=-1,b=0,c=0,d=, 从而A的逆矩阵为A-1= 0,))). 所以A-1B= 0,)))1,0) 2,6)=-1,0) -2,3). 2.N2,N3[2013·浙江卷] 已知a∈R“矩阵与变换和坐标系与参数方程”模块 (1)以极坐标系Ox的极点O为原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,并在两种坐标系中取相同的长度单位.把极坐标方程cos θ+ρ2sin θ=1化成直角坐标方程. (2)在直角坐标系xOy中,曲线C:(θ为参数),过点P(2,1)的直线与曲线C交于A,B两点.若|PA|·|PB|=,求|AB|的值. 2.解:(1)极坐标方程两边同乘以ρ得ρcos θ+ρ3sin θ=ρ. 又在直角坐标系下,ρcos θ=x,ρsin θ=y,ρ2=x2+y2, 故化成直角坐标方程为x+y(x2+y2)=. 又(0,0)满足原极坐标方程. 故所求的直角坐标方程为x+y(x2+y2)=. (2)由题意,曲线C的直角坐标方程为x2+2y2=2. 设过点P(2,1),倾斜角为α的直线的参数方程为 (t为参数). 及点A,B对应的参数分别为t1,t2. 将直线的参数方程代入x2+2y2=2得 (2+tcos α)2+2(1+tsin α)2-2=0. 即(1+sin2α)t2+4(sin α+cos α)t+4=0. 则Δ=16(2sin αcos α-sin2 α)>0,且t1+t2=-,t1t2=, 由|PA|·|PB|=得|t1t2|==. 故sin2 α=.又由Δ>0得0查看更多