2019届二轮复习逻辑联结词、全称量词与存在量词学案(全国通用)
1.了解逻辑联结词“或”“且”“非”的含义
2.理解全称量词与存在量词的意义
3.能正确地对含有一个量词的命题进行否定
热点题型一 含有逻辑联结词的命题的真假判断
例1、【2017山东,文5】已知命题p:;命题q:若,则a
1”是“>1”的( )
A、充分不必要条件 B、必要不充分条件
C、充要条件 D、既不充分也不必要条件
【答案】C
6.【2015高考安徽,文3】设p:x<3,q:-1b不一定推出a2>b2,反之也不成立.
2.(2014·广东卷) 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的( )
A.充分必要条件
B.充分非必要条件
C.必要非充分条件
D.非充分非必要条件
【答案】A
【解析】设R是三角形外切圆的半径,R>0,由正弦定理,得a=2Rsin A,b=2Rsin B.故选A.∵sin≤A sin B,∴2Rsin A≤2Rsin B,∴a≤b.同理也可以由a≤b推出sin A≤sin B.
3.(2014·新课标全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则( )
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
【答案】C
4.(2014·浙江卷) 设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】A
【解析】若四边形ABCD为菱形,则AC⊥BD;反之,若AC⊥BD,则四边形ABCD不一定为平行四边形.故“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.故选A.