- 2021-06-17 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习(文) 导数与函数的单调性、极值、最值问题学案(全国通用)
第4讲 导数与函数的单调性、极值、最值问题 高考定位 利用导数研究函数的性质,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题. 真 题 感 悟 1.(2017·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)·ex-1的极值点,则f(x)的极小值为( ) A.-1 B.-2e-3 C.5e-3 D.1 解析 f′(x)=[x2+(a+2)x+a-1]·ex-1, 则f′(-2)=[4-2(a+2)+a-1]·e-3=0⇒a=-1, 则f(x)=(x2-x-1)·ex-1,f′(x)=(x2+x-2)·ex-1, 令f′(x)=0,得x=-2或x=1, 当x<-2或x>1时,f′(x)>0, 当-2查看更多