【数学】2020届一轮复习(理)人教通用版4-7解三角形的实际应用学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习(理)人教通用版4-7解三角形的实际应用学案

‎§4.7 解三角形的实际应用 最新考纲 考情考向分析 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.‎ 以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性.题型主要为选择题和填空题,中档难度.‎ 实际测量中的常见问题 求AB 图形 需要测量的元素 解法 求竖直高度 底部可达 ‎∠ACB=α,‎ BC=a 解直角三角形AB=atan α 底部 不可达 ‎∠ACB=α,‎ ‎∠ADB=β,‎ CD=a 解两个直角三角形AB= 求水平距离 山两侧 ‎∠ACB=α,‎ AC=b,‎ BC=a 用余弦定理AB= 河两岸 ‎∠ACB=α,‎ ‎∠ABC=β,‎ CB=a 用正弦定理AB= 河对岸 ‎∠ADC=α,‎ ‎∠BDC=β,‎ ‎∠BCD=δ,‎ ‎∠ACD=γ,‎ CD=a 在△ADC中,AC=;在△BDC中,BC=;‎ 在△ABC中,应用余弦定理求AB 概念方法微思考 在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么?‎ 提示 实际测量中有高度、距离、角度等问题,基本思想是根据已知条件,构造三角形(建模),利用正弦定理、余弦定理解决问题.‎ 题组一 思考辨析 ‎1.判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( × )‎ ‎(2)俯角是铅垂线与视线所成的角,其范围为.( × )‎ ‎(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ )‎ ‎(4)方位角大小的范围是[0,2π),方向角大小的范围一般是.( √ )‎ 题组二 教材改编 ‎2.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出A,C的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为________m.‎ 答案 50 解析 由正弦定理得=,‎ 又B=30°,‎ ‎∴AB===50(m).‎ ‎3.如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=______米.‎ 答案 a 解析 由题图可得∠PAQ=α=30°,‎ ‎∠BAQ=β=15°,在△PAB中,∠PAB=α-β=15°,‎ 又∠PBC=γ=60°,‎ ‎∴∠BPA=-=γ-α=30°,‎ ‎∴在△PAB中,=,∴PB=a,‎ ‎∴PQ=PC+CQ=PB·sin γ+asin β ‎=a×sin 60°+asin 15°=a.‎ 题组三 易错自纠 ‎4.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为(  )‎ A.10 m B.20 m C.20 m D.40 m 答案 D 解析 设电视塔的高度为x m,则BC=x,BD=x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=-20(舍去)或x=40.故电视塔的高度为40 m.‎ ‎5.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.‎ 答案 130°‎ 解析 60°+70°=130°.‎ ‎6.海上有A,B,C三个小岛,A,B相距5 海里,从A岛望C和B成45°视角,从B岛望C和A成75°视角,则B,C两岛间的距离是________海里.‎ 答案 5 解析 由题意可知∠ACB=60°,由正弦定理得=,即=,得BC=5.‎ 题型一 测量距离问题 ‎1.(2018·营口检测)江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.‎ 答案 10 解析 如图,‎ OM=AOtan 45°=30(m),‎ ON=AOtan 30°=×30‎ ‎=10(m),‎ 在△MON中,由余弦定理得 MN= ‎==10 (m).‎ ‎2.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD= km,∠ADB=∠CDB=30°,∠ACD=60°,‎ ‎∠ACB=45°,则A,B两点间的距离为________ km.‎ 答案  解析 ∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,‎ ‎∴∠DAC=60°,‎ ‎∴AC=DC= km.‎ 在△BCD中,∠DBC=45°,‎ 由正弦定理,得BC=·sin∠BDC=·sin 30°=(km).‎ 在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=+-2×××=.‎ ‎∴AB= km.∴A,B两点间的距离为 km.‎ ‎3.如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为________ m.‎ 答案 900‎ 解析 由已知,得∠QAB=∠PAB-∠PAQ=30°.‎ 又∠PBA=∠PBQ=60°,‎ ‎∴∠AQB=30°,∴AB=BQ.‎ 又PB为公共边,∴△PAB≌△PQB,‎ ‎∴PQ=PA.‎ 在Rt△PAB中,AP=AB·tan 60°=900,故PQ=900,‎ ‎∴P,Q两点间的距离为900 m.‎ 思维升华 求距离问题的两个策略 ‎(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.‎ ‎(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.‎ 题型二 测量高度问题 例1 (2018·赤峰测试)如图,小明同学在山顶A处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°,若山高AD=100 m,汽车从B点到C点历时14 s,则这辆汽车的速度约为________ m/s.(精确到0.1,参考数据:≈1.414,≈2.236)‎ 答案 22.6‎ 解析 因为小明在A处测得公路上B,C两点的俯角分别为30°,45°,所以∠BAD=60°,∠CAD=45°,设这辆汽车的速度为v m/s,则BC=14v,在Rt△ADB中,AB===200.在Rt△ADC中,AC===100.在△ABC中,由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC,所以(14v)2=(100)2+2002-2×100×200×cos 135°,所以v=≈22.6,所以这辆汽车的速度约为22.6 m/s.‎ 思维升华 (1)高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求的高度(某线段的长度)纳入到一个可解的三角形中.‎ ‎(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.‎ 跟踪训练1 如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,则山高CD=____________.‎ 答案  解析 由已知得∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.‎ 在△ABC中,由正弦定理得=,‎ 即=,‎ ‎∴AC==.‎ 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=.‎ 故山高CD为.‎ 题型三 角度问题 例2 如图所示,一艘巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)的方向,匀速向北航行20分钟后到达B处,测得山顶P位于北偏东60°的方向,此时测得山顶P的仰角为60°,已知山高为2 千米.‎ ‎(1)船的航行速度是每小时多少千米?‎ ‎(2)若该船继续航行10分钟到达D处,问此时山顶位于D处南偏东多少度的方向?‎ 解 (1)在△BCP中,由tan∠PBC=,‎ 得BC==2,‎ 在△ABC中,由正弦定理得=,即=,‎ 所以AB=2(+1),‎ 故船的航行速度是每小时6(+1)千米.‎ ‎(2)在△BCD中,BD=+1,BC=2,∠CBD=60°,‎ 则由余弦定理得CD=,‎ 在△BCD中,由正弦定理得=,‎ 即=,‎ 所以sin∠CDB=,‎ 所以,山顶位于D处南偏东45°的方向.‎ 思维升华 解决测量角度问题的注意事项 ‎(1)首先应明确方位角和方向角的含义.‎ ‎(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.‎ ‎(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.‎ 跟踪训练2 (2018·襄阳模拟)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的(  )‎ A.北偏东10° B.北偏西10°‎ C.南偏东80° D.南偏西80°‎ 答案 D 解析 由条件及图可知,∠A=∠CBA=40°,‎ 又∠BCD=60°,所以∠CBD=30°,‎ 所以∠DBA=10°,因此灯塔A在灯塔B的南偏西80°.‎ ‎1.(2018·沈阳调研)已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得∠ABC=120°,则A,C两地间的距离为(  )‎ A.10 km B.10 km C.10 km D.10 km 答案 D 解析 如图所示,由余弦定理可得AC2=100+400-2×10×20×cos 120°=700,∴AC=10.‎ ‎2.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100 m到达B处,又测得C对于山坡的斜度为45°,若CD=50 m,山坡对于地平面的坡度为θ,则cos θ等于(  )‎ A. B. C.-1 D.-1‎ 答案 C 解析 在△ABC中,由正弦定理得=,‎ ‎∴AC=100.‎ 在△ADC中,=,‎ ‎∴cos θ=sin(θ+90°)==-1.‎ ‎3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  )‎ A.10 海里 B.10 海里 C.20 海里 D.20 海里 答案 A 解析 如图所示,易知,‎ 在△ABC中,AB=20,‎ ‎∠CAB=30°,∠ACB=45°,‎ 根据正弦定理得 =,‎ 解得BC=10.‎ ‎4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为(  )‎ A.30° B.45° C.60° D.75°‎ 答案 B 解析 依题意可得AD=20,AC=30,‎ 又CD=50,所以在△ACD中,‎ 由余弦定理得cos∠CAD= ‎===,‎ 又0°<∠CAD<180°,‎ 所以∠CAD=45°,‎ 所以从顶端A看建筑物CD的张角为45°.‎ ‎5.(2018·呼和浩特质检)如图所示,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于(  )‎ A.5 B.15 C.5 D.15 答案 D 解析 在△BCD中,∠CBD=180°-15°-30°=135°.‎ 由正弦定理得=,所以BC=15.‎ 在Rt△ABC中,AB=BCtan∠ACB=15×=15.‎ 故选D.‎ ‎6.(2018·丹东模拟)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于(  )‎ A.240(+1)m B.180(-1)m C.120(-1)m D.30(+1)m 答案 C 解析 如图,∠ACD=30°,∠ABD=75°,AD=60 m,‎ 在Rt△ACD中,‎ CD== ‎=60(m),‎ 在Rt△ABD中,BD=== ‎=60(2-)m,‎ ‎∴BC=CD-BD=60-60(2-)=120(-1)m.‎ ‎7.(2018·乌海模拟)如图,某工程中要将一长为100 m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.‎ 答案 100 解析 设坡底需加长x m,‎ 由正弦定理得=,‎ 解得x=100.‎ ‎8.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cos θ的值为________.‎ 答案  解析 在△ABC中,AB=40,AC=20,∠BAC=120°,‎ 由余弦定理得 BC2=AB2+AC2-2AB·AC·cos 120°=2 800,‎ 得BC=20.‎ 由正弦定理,得=,‎ 即sin∠ACB=·sin∠BAC=.‎ 由∠BAC=120°,知∠ACB为锐角,‎ 则cos∠ACB=.‎ 由θ=∠ACB+30°,得cos θ=cos(∠ACB+30°)‎ ‎=cos∠ACBcos 30°-sin∠ACBsin 30°=.‎ ‎9.(2018·阜新模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里.‎ 答案 10‎ 解析 如图所示,依题意有∠BAC=60°,∠BAD=75°,‎ 所以∠CAD=∠CDA=15°,从而CD=CA=10,‎ 在Rt△ABC中,得AB=5,‎ 于是这艘船的速度是=10(海里/时).‎ ‎10.(2018·盘锦质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为_____米.‎ 答案 50 解析 如图,连接OC,在△OCD中,OD=100,CD=150,∠CDO=60°.由余弦定理得OC2=1002+1502-2×100×150×cos 60°=17 500,解得OC=50.‎ ‎11.如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划要在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.‎ ‎(1)将AN,AM用含θ的关系式表示出来;‎ ‎(2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?‎ 解 (1)∠AMN=θ,‎ 在△AMN中,由正弦定理,得 ==,‎ 所以AN=sin θ,AM=sin(120°-θ).‎ ‎(2)AP2=AM2+MP2-2AM·MP·cos∠AMP ‎=sin2(θ+60°)+4-sin(θ+60°)cos(θ+60°)‎ ‎=[1-cos(2θ+120°)]-sin(2θ+120°)+4‎ ‎=-[sin(2θ+120°)+cos(2θ+120°)]+ ‎=-sin(2θ+150°),θ∈(0°,120°)(其中利用诱导公式可知sin(120°-θ)=sin(θ+60°)),‎ 当且仅当2θ+150°=270°,即θ=60°时,工厂产生的噪声对居民的影响最小,此时AN=AM=2千米.‎ ‎12.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.‎ ‎(1)求渔船甲的速度;‎ ‎(2)求sin α的值.‎ 解 (1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.‎ 在△ABC中,由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC ‎=122+202-2×12×20×cos 120°=784,‎ 解得BC=28.‎ 所以渔船甲的速度为=14(海里/时).‎ ‎(2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得=,‎ 即sin α===.‎ ‎13.如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角,则从塔BB1的底部看塔AA1顶部的仰角的正切值为________;塔BB1的高为________ m.‎ 答案  45‎ 解析 设从塔BB1的底部看塔AA1顶部的仰角为α,‎ 则AA1=60tan α,BB1=60tan 2α.‎ ‎∵从两塔底部连线中点C分别看两塔顶部的仰角互为余角,∴△A1AC∽△CBB1,∴=,‎ ‎∴AA1·BB1=900,‎ ‎∴3 600tan αtan 2α=900,‎ ‎∴tan α=,tan 2α=,则BB1=60tan 2α=45.‎ ‎14.如图,据气象部门预报,在距离某码头南偏东45°方向600 km处的热带风暴中心正以 ‎20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为________h.‎ 答案 15‎ 解析 记现在热带风暴中心的位置为点A,t小时后热带风暴中心到达B点位置,在△OAB中,OA=600,AB=20t,∠OAB=45°,根据余弦定理得OB2=6002+400t2-2×600×20t×,令OB2≤4502,即4t2-120t+1 575≤0,解得≤t≤,所以该码头将受到热带风暴影响的时间为-=15(h).‎ ‎15.某舰艇在A处测得一艘遇险渔船在其北偏东40°的方向距离A处10海里的C处,此时得知,该渔船正沿南偏东80°的方向以每小时9海里的速度向一小岛靠近,若舰艇的时速为21海里,求舰艇追上渔船的最短时间.‎ 解 如图所示,设舰艇追上渔船的最短时间是t小时,经过t小时渔船到达B处,则舰艇也在此时到达B处.在△ABC中,∠ACB=40°+80°=120°,CA=10,CB=9t,AB=21t,由余弦定理得(21t)2=102+(9t)2-2×10×9t×cos 120°,即36t2-9t-10=0,解得t=或t=-(舍).‎ ‎16.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C,现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为 ‎1 260 m,经测量得cos A=,sin B=.‎ ‎(1)问乙出发多少 min后,乙在缆车上与甲的距离最短?‎ ‎(2)为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在什么范围内?‎ 解 (1)∵cos A=,sin B=,‎ ‎∴sin A=,cos B=-,‎ ‎∴sin C=sin(A+B)=,‎ 在△ABC中,由正弦定理=,‎ 得AB=1 040 m,‎ 设乙出发t min后,甲、乙距离为d,‎ 由余弦定理得d2=(130t)2+(100+50t)2-2×130t×(100+50t)×,‎ 即d2=200(37t2-70t+50)=200.‎ ‎∵0≤t≤,即0≤t≤8,∴当t=时,‎ 即乙出发 min后,乙在缆车上与甲的距离最短.‎ ‎(2)∵sin A=,‎ ‎∴由正弦定理,得=,即=,‎ ‎∴BC=500 m.‎ 乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m才能到达C.‎ 设乙的步行速度为v m/min,则≤3,‎ 故-3≤-≤3,解得≤v≤.‎ 故为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在范围内. ‎
查看更多

相关文章

您可能关注的文档