- 2021-06-16 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教B版 圆的参数方程作业
一、选择题 1.圆心在点(-1,2),半径为5的圆的参数方程为( ) A.(0≤θ<2π) B.(0≤θ<2π) C.(0≤θ<π) D.(0≤θ<2π) 解析: 选D 圆心在点C(a,b),半径为r的圆的参数方程为(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为(0≤θ<2π). 2.直线3x-4y-9=0与圆(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但不过圆心 解析:选D 圆的普通方程为x2+y2=4,∴圆心坐标为(0,0),半径r=2,点(0,0)到直线3x-4y-9=0的距离为d==<2,∴直线与圆相交,而(0,0)点不在直线上. 3.P(x,y)是曲线(α为参数)上任意一点,则(x-5)2+(y+4)2的最大值为( ) A.36 B.6 C.26 D.25 解析:选A 设P(2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2 =25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ)(tan φ=,φ为锐角). ∴最大值为36. 4.设Q(x1,y1)是单位圆x2+y2=1上一个动点,则动点P(x-y,x1y1)的轨迹方程是( ) A. B. C. D. 解析:选C 设x1=cos θ,y1=sin θ.则 即 二、填空题 5.参数方程(α为参数)表示的图形是________. 解析:∵且cos 2α+sin 2α=1, ∴x2+(y-1)2=1. ∴该参数方程表示以(0,1)为圆心,以1为半径的圆. 答案:圆 6.已知圆C:与直线x+y+a=0有公共点,则实数a的取值范围为________. 解析:将圆C的方程代入直线方程,得 cos θ-1+sin θ+a=0, 即a=1-(sin θ+cos θ)=1-sin. ∵-1≤sin≤1, ∴1-≤a≤1+. 答案:[1-,1+ ] 7.P(x,y)是曲线(α为参数)上任意一点,则P到直线x-y+4=0的距离的最小值是________. 解析:由P在曲线上可得P的坐标为(2+cos α,sin α). 由点到直线的距离公式得d= =,当cos=-1时,d最小, dmin==-1+3. 答案:-1+3 8.已知动圆x2+y2-2axcos θ-2bysin θ=0(a,b是正常数,且a≠b,θ为参数),则圆心的轨迹的参数方程为________. 解析:设P(x,y)为动圆的圆心,由x2+y2-2axcos θ-2bysin θ=0得:(x-acos θ)2+(y-bsin θ)2=a2cos 2θ+ b2sin 2θ.∴ 答案: 三、解答题 9.已知圆的方程为x2+y2=2x,写出它的参数方程. 解:x2+y2=2x的标准方程为(x-1)2+y2=1, 设x-1=cos θ,y=sin θ,则 参数方程为(0≤θ<2π). 10.已知圆的极坐标方程为ρ2-4ρcos+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P(x,y)在该圆上,求x+y的最大值和最小值. 解: (1)由ρ2-4ρcos+6=0得, ρ2-4ρcos θ-4ρsin θ+6=0, 即x2+y2-4x-4y+6=0, 由圆的标准方程(x-2)2+(y-2)2=2, 令x-2=cos α,y-2=sin α, 得圆的参数方程为(α为参数). (2)由(1)知,x+y=4+(cos α+sin α) =4+2sin. 又∵-1≤sin≤1, ∴x+y的最大值为6,最小值为2. 11.在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数,且0≤θ≤2π),点M是曲线C1上的动点. (1)求线段OM的中点P的轨迹的参数方程; (2)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,若直线l的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P到直线l距离的最大值. 解:(1)曲线C1上的动点M的坐标为(4cos θ,4sin θ),坐标原点O(0,0), 设P的坐标为(x,y),则由中点坐标公式得x=(0+4cos θ)=2cos θ,y=(0+4sin θ)=2sin θ, 所以点P的坐标为(2cos θ,2sin θ), 因此点P的轨迹的参数方程为(θ为参数,且0≤θ≤2π). (2)由直角坐标与极坐标关系得直线l的直角坐标方程为x-y+1=0, 又由(1)知点P的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x-y+1=0的距离为 ==, 所以点P到直线l距离的最大值为2+.查看更多