- 2021-06-16 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【新教材】2020-2021学年高中人教A版数学必修第二册习题:8-5-2 直线与平面平行
8.5.2 直线与平面平行 课后篇巩固提升 基础达标练 1.如果两直线a∥b,且a∥α,则b与α的位置关系是( ) A.相交 B.b∥α C.b⊂α D.b∥α或b⊂α 解析由a∥b,且a∥α,知b与α平行或b⊂α. 答案D 2.如图,在四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( ) A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能 解析∵MN∥平面PAD,MN⊂平面PAC, 平面PAD∩平面PAC=PA,∴MN∥PA. 答案B 3.(多选题)(2020山东高三一模)在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是( ) A.E,F,G,H一定是各边的中点 B.G,H一定是CD,DA的中点 C.AE∶EB=AH∶HD,且BF∶FC=DG∶GC D.四边形EFGH是平行四边形或梯形 解析因为BD ∥平面EFGH,所以由线面平行的性质定理,得BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC,且EH∥FG,所以四边形EFGH是平行四边形或梯形. 答案CD 4.如图,在四面体ABCD中,若M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系为( ) A.平行 B.可能相交 C.相交或BD⊂平面MNP D.以上都不对 解析显然BD⊄平面MNP, ∵N,P分别为BC,DC的中点, ∴NP∥BD,而NP⊂平面MNP, ∴BD∥平面MNP. 答案A 5. 如图,E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过点E,F,G的截面平行的棱是 . 解析∵E,F分别是BC,CD的中点,∴EF∥BD, 又BD⊄平面EFG,EF⊂平面EFG, ∴BD∥平面EFG. 同理可得AC∥平面EFG. 很明显,CB,CD,AD,AB均与平面EFG相交. 答案BD,AC 6.如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱BC,C1D1的中点,则EF与平面BDD1B1的位置关系是 . 解析取D1B1的中点M,连接FM,MB,则FM查看更多