【数学】2020届一轮复习北师大版比较法学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习北师大版比较法学案

一 比较法 ‎1.作差比较法 ‎(1)作差比较法的理论依据a-b>0⇔a>b,a-b<0⇔a0,若>1,则a>b;若<1,则a1,则ab.‎ ‎(2)作商比较法解题的一般步骤:‎ ‎①判定a,b的符号;②作商;③变形整理;④判定与1大小关系;⑤得出结论.‎ 作差比较法证明不等式 ‎[例1] 已知x>y,求证:x3-x2y+xy2>x2y-xy2+y3.‎ ‎[思路点拨] 因为不等式两边是同一种性质的整式,所以可以直接通过作差比较大小.‎ ‎[证明] x3-x2y+xy2-(x2y-xy2+y3)‎ ‎=x(x2-xy+y2)-y(x2-xy+y2)‎ ‎=(x-y)(x2-xy+y2)‎ ‎=(x-y).‎ 因为x>y,所以x-y>0,‎ 于是(x-y)>0,‎ 所以x3-x2y+xy2>x2y-xy2+y3.‎ ‎(1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.‎ ‎(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.‎ ‎(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论.‎ ‎1.求证:a2+b2≥2(a-b-1).‎ 证明:a2+b2-2(a-b-1)‎ ‎=(a-1)2+(b+1)2≥0,‎ ‎∴a2+b2≥2(a-b-1).‎ ‎2.已知a,b∈R+,n∈N+,‎ 求证:(a+b)(an+bn)≤2(an+1+bn+1).‎ 证明:∵(a+b)(an+bn)-2(an+1+bn+1)‎ ‎=an+1+abn+ban+bn+1-2an+1-2bn+1‎ ‎=a(bn-an)+b(an-bn)‎ ‎=(a-b)(bn-an).‎ ‎①当a>b>0时,bn-an<0,a-b>0,‎ ‎∴(a-b)(bn-an)<0.‎ ‎②当b>a>0时,bn-an>0,a-b<0.‎ ‎∴(a-b)(bn-an)<0.‎ ‎③当a=b>0时,(bn-an)(a-b)=0.‎ 综合①②③可知,对于a,b∈R+,n∈N+,都有(a+b)(an+bn)≤2(an+1+bn+1).‎ 作商比较法证明不等式 ‎[例2] 设a>0,b>0,求证:aabb≥(ab).‎ ‎[思路点拨] 不等式两端都是指数式,它们的值均为正数,可考虑用作商比较法.‎ ‎[证明] ∵aabb>0,(ab)>0,‎ ‎∴=a·b=.‎ 当a=b时,显然有=1;‎ 当a>b>0时,>1,>0,‎ ‎∴由指数函数单调性,有>1;‎ 当b>a>0时,0<<1,<0,‎ ‎∴由指数函数的单调性,有>1.‎ 综上可知,对任意实数a,b,都有aabb≥(ab).‎ 当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.‎ ‎3.已知a>b>c>0.求证:a2ab2bc2c>ab+cbc+aca+b.‎ 证明:由a>b>c>0,得ab+cbc+aca+b>0.‎ 作商= ‎=aa-baa-cbb-cbb-acc-acc-b ‎=a-ba-cb-c.‎ 由a>b>c>0,得a-b>0,a-c>0,b-c>0,‎ 且>1,>1,>1.‎ ‎∴a-ba-cb-c>1.‎ ‎∴a2ab2bc2c>ab+cbc+aca+b.‎ ‎4.设n∈N,n>1,求证logn(n+1)>log(n+1)(n+2).‎ 证明:因为n>1,‎ 所以logn(n+1)>0,log(n+1)(n+2)>0,‎ 所以=log(n+1)(n+2)·log(n+1)n ‎≤2‎ ‎=2‎ ‎<2=1.‎ 故log(n+1)(n+2)a时,设m=a+x(x>0),乘坐起步价为10元的出租车费用为P(x)元.乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2 x,‎ Q(x)=8+1.4x.‎ ‎∵P(x)-Q(x)=2-0.2x=0.2(10-x),‎ ‎∴当x>10时,P(x)Q(x),此时选起步价为8元的出租车较为合适.‎ 当x=10时,P(x)=Q(x),两种出租车任选,费用相同.‎ ‎1.下列关系中对任意a1 D.a2>b2‎ 解析:选B ∵a-b>0.‎ ‎(-a)2>(-b)2>0.‎ 即a2>b2>0.∴<1.‎ 又lg b2-lg a2=lgQ B.P0恒成立,‎ ‎∴Q≥P.‎ 法二:P-Q= ‎=,‎ ‎∵a2+a+1>0恒成立且a4+a2≥0,‎ ‎∴P-Q≤0,即Q≥P.‎ ‎3.已知a>0,b>0,m=+,n=+,p=,则m,n,p的大小关系是(  )‎ A.m≥n>p B.m>n≥p C.n>m>p D.n≥m>p 解析:选A 由m=+,n=+,得a=b>0时,m=n, 可排除B、C项.比较A、D项,不必论证与p的关系.取特殊值a=4,b=1,则m=4+=,n=2+1=3,∴m>n,可排除D,故选A.‎ ‎4.设m>n,n∈N+,a=(lg x)m+(lg x)-m,b=(lg x)n+(lg x)-n,x>1,则a与b的大小关系为(  )‎ A.a≥b B.a≤b C.与x值有关,大小不定 D.以上都不正确 解析:选A a-b=lgmx+lg-mx-lgnx-lg-nx ‎=(lgmx-lgnx)- ‎=(lgmx-lgnx)- ‎=(lgmx-lgnx) ‎=(lgmx-lgnx).‎ ‎∵x>1,∴lg x>0.‎ 当0b;‎ 当lg x=1时,a=b;‎ 当lg x>1时,a>b.‎ ‎∴应选A.‎ ‎5.若0Q,则实数a,b满足的条件为________.‎ 解析:P-Q=a2b2+5-(2ab-a2-4a)‎ ‎=a2b2+5-2ab+a2+4a ‎=a2b2-2ab+1+4+a2+4a ‎=(ab-1)2+(a+2)2,‎ ‎∵P>Q,∴P-Q>0,‎ 即(ab-1)2+(a+2)2>0,‎ ‎∴ab≠1或a≠-2.‎ 答案: ab≠1或a≠-2‎ ‎7.一个个体户有一种商品,其成本低于元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应________出售(填“月初”或“月末”).‎ 解析:设这种商品的成本费为a元.‎ 月初售出的利润为L1=100+(a+100)×2.5%,‎ 月末售出的利润为L2=120-2%a,‎ 则L1-L2=100+0.025a+2.5-120+0.02a ‎=0.045,‎ ‎∵a<,‎ ‎∴L10,‎ 即ax+by+cz>ax+cy+bz.‎ ax+by+cz-(bx+ay+cz)=(a-b)x+(b-a)y=(a-b)(x-y)>0,‎ ‎∴ax+by+cz>bx+ay+cz.‎ ax+by+cz-(bx+cy+az)=(a-b)x+(b-c)y+(c-a)z=(a-b)x+(b-c)y+[(c-b)+(b-a)]z=(a-b)(x-z)+(b-c)(y-z)>0,‎ ‎∴ax+by+cz>bx+cy+az.‎ 故ax+by+cz最大.‎
查看更多

相关文章

您可能关注的文档