- 2021-06-15 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习北师大版等比数列(理)教案
第三节 等比数列 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N*,q为非零常数). (2)等比中项:如果a,G,b成等比数列,那么G叫作a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab. 2.等比数列的有关公式 (1)通项公式:an=a1qn-1. (2)前n项和公式:Sn= 3.等比数列的常用性质 (1)通项公式的推广:an=am·qn-m(n,m∈N*). (2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a; (3)若数列{an},{bn}(项数相同)是等比数列,则{λan},,{a},{an·bn},(λ≠0)仍然是等比数列; (4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk. 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.( ) (2)G为a,b的等比中项⇔G2=ab.( ) (3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( ) (4)数列{an}的通项公式是an=an,则其前n项和为Sn=.( ) [答案] (1)× (2)× (3)× (4)× 2.(2017·广州综合测试(二))已知等比数列{an}的公比为-,则的值是( ) A.-2 B.- C. D.2 A [==-2.] 3.(2017·东北三省四市一联)等比数列{an}中,an>0,a1+a2=6,a3=8,则a6=( ) 【导学号:57962249】 A.64 B.128 C.256 D.512 A [设等比数列的首项为a1,公比为q,则由解得或(舍去),所以a6=a1q5=64,故选A.] 4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________. 27,81 [设该数列的公比为q,由题意知, 243=9×q3,q3=27,∴q=3. ∴插入的两个数分别为9×3=27,27×3=81.] 5.(2015·全国卷Ⅰ)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=__________. 6 [∵a1=2,an+1=2an, ∴数列{an}是首项为2,公比为2的等比数列. 又∵Sn=126,∴=126,解得n=6.] 等比数列的基本运算 (1)(2017·陕西质检(二))已知等比数列{an}的前n项和为Sn.若S3=a2+10a1,a5=9,则a1=( ) A. B.- C. D.- (2)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于__________. (1)C (2)2n-1 [(1)设等比数列的公比为q,则由S3=a2+10a1得a1+a1q2=10a1,则q2=9,又因为a5=a1q4=9,所以a1=. (2)设等比数列的公比为q,则有 解得或 又{an}为递增数列,∴∴Sn==2n-1.] [规律方法] 1.等比数列的通项公式与前n项和公式共涉及五个量a1,n,q,an,Sn,一般可以“知三求二”,体现了方程思想的应用. 2.在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,在运算过程中,应善于运用整体代换思想简化运算. [变式训练1] (1)在等比数列{an}中,a3=7,前3项和S3=21,则公比q的值为( ) 【导学号:57962250】 A.1 B.- C.1或- D.-1或 (2)设等比数列{an}的前n项和为Sn,若27a3-a6=0,则=__________. 【导学号:57962251】 (1)C (2)28 [(1)根据已知条件得 ②÷①得=3. 整理得2q2-q-1=0, 解得q=1或q=-. (2)由题可知{an}为等比数列,设首项为a1,公比为q,所以a3=a1q2,a6=a1q5,所以27a1q2=a1q5,所以q=3,由Sn=,得S6=,S3=,所以=·=28.] 等比数列的判定与证明 (2016·全国卷Ⅲ)已知数列{an}的前n项和Sn=1+λan,其中λ≠0. (1)证明{an}是等比数列,并求其通项公式; (2)若S5=,求λ. [解] (1)证明:由题意得a1=S1=1+λa1, 2分 故λ≠1,a1=,故a1≠0. 3分 由Sn=1+λan,Sn+1=1+λan+1得an+1=λan+1-λan, 即an+1(λ-1)=λan. 5分 由a1≠0,λ≠0得an≠0,所以=. 因此{an}是首项为,公比为的等比数列, 于是an=. 7分 (2)由(1)得Sn=1-. 9分 由S5=得1-=,即=. 10分 解得λ=-1. 12分 [规律方法] 等比数列的判定方法 (1)定义法:若=q(q为非零常数,n∈N*),则{an}是等比数列. (2)等比中项法:若数列{an}中,an≠0,且a=an·an+2(n∈N*),则数列{an}是等比数列. (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列. 说明:前两种方法是证明等比数列的常用方法,后者常用于选择题、填空题中的判定. [变式训练2] 设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2. (1)设bn=an+1-2an,证明:数列{bn}是等比数列; (2)求数列{an}的通项公式. [解] (1)证明:由a1=1及Sn+1=4an+2, 有a1+a2=S2=4a1+2. ∴a2=5,∴b1=a2-2a1=3. 又 ①-②,得an+1=4an-4an-1(n≥2), ∴an+1-2an=2(an-2an-1)(n≥2). 3分 ∵bn=an+1-2an,∴bn=2bn-1(n≥2), 故{bn}是首项b1=3,公比为2的等比数列. 6分 (2)由(1)知bn=an+1-2an=3·2n-1, ∴-=, 故是首项为,公差为的等差数列. 9分 ∴=+(n-1)·=, 故an=(3n-1)·2n-2. 12分 等比数列的性质及应用 (1)(2016·安徽六安一中综合训练)在各项均为正数的等比数列{an }中,若am+1·am-1=2am(m≥2),数列{an}的前n项积为Tn,若T2m-1=512,则m的值为( ) A.4 B.5 C.6 D.7 (2)(2016·天津高考)设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( ) A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 (1)B (2)C [(1)由等比数列的性质可知am+1·am-1=a=2am(m≥2),所以am=2,即数列{an}为常数列,an=2,所以T2m-1=22m-1=512=29,即2m-1=9,所以m=5,故选B. (2)若对任意的正整数n,a2n-1+a2n<0,则a1+a2<0,又a1>0,所以a2<0,所以q=<0.若q<0,可取q=-1,a1=1,则a1+a2=1-1=0,不满足对任意的正整数n,a2n-1+a2n<0.所以“q<0”是“对任意的正整数n,a2n-1+a2n<0”的必要而不充分条件.故选C.] [规律方法] 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度. 2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口. [变式训练3] (1)(2017·合肥三次质检)在正项等比数列{an}中,a1 008·a1 009=,则lg a1+lg a2+…+lg a2 016=( ) 【导学号:57962252】 A.2 015 B.2 016 C.-2 015 D.-2 016 (2)(2017·南昌一模)若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为( ) 【导学号:57962253】 A. B. C.1 D.2 (1)D (2)D [(1)lg a1+lg a2+…+lg a2 016=lg a1a2…a2 016=lg(a1 008·a1 009)1 008=lg1 008=lg1 008=-2 016,故选D. (2)由题意得S4==9,所以=.由a1·a1q·a1q2·a1q3=(aq3)2=得aq3=.由等比数列的性质知该数列前4项倒数的和为==·==2,故选D.] [思想与方法] 1.方程的思想.等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求解. 2.函数的思想.通项公式an =a1qn-1可化为an=qn,因此an是关于n的函数,即{an}中的各项所表示的点(n,an)在曲线y=qx上,是一群孤立的点. 3.分类讨论思想.当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn==.等比数列的前n项和公式涉及对公比q的分类讨论,此处是常考易错点. [易错与防范] 1.特别注意q=1时,Sn=na1这一特殊情况. 2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0. 3.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽视q=1这一特殊情形而导致解题失误. 4.Sn,S2n-Sn,S3n-S2n未必成等比数列(例如:当公比q=-1且n为偶数时,Sn,S2n-Sn,S3n-S2n不成等比数列;当q≠-1或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n成等比数列).查看更多