专题11+数列的求和问题(热点难点突破)-2019年高考数学(理)考纲解读与热点难点突破
1.已知数列{an},{bn}满足a1=1,且an,an+1是方程x2-bnx+2n=0的两根,则b10等于( )
A.24 B.32
C.48 D.64
答案 D
解析 由已知有anan+1=2n,
∴an+1an+2=2n+1,则=2,
∴数列{an}的奇数项、偶数项均为公比为2的等比数列,可以求出a2=2,
∴数列{an}的项分别为1,2,2,4,4,8,8,16,16,32,32,…,而bn=an+an+1,
∴b10=a10+a11=32+32=64.
2.已知数列{an}的前n项和为Sn=2n+1+m,且a1,a4,a5-2成等差数列,bn=,数列{bn}的前n项和为Tn,则满足Tn>的最小正整数n的值为( )
A.11 B.10 C.9 D.8
答案 B
解析 根据Sn=2n+1+m可以求得an=
所以有a1=m+4,a4=16,a5=32,
根据a1,a4,a5-2成等差数列,
可得m+4+32-2=32,从而求得m=-2,
所以a1=2满足an=2n,
从而求得an=2n(n∈N*),
所以bn==
=-,
所以Tn=1-+-+-+…+-=1-,
令1->,整理得2n+1>2 019,
解得n≥10.
3.设Sn为数列{an}的前n项和,已知a1=,=+2n(n∈N*),则S100等于( )
A.2- B.2-
C.2- D.2-
答案 D
4.已知数列{an}的通项公式为a则数列的前2n项和的最小值为( )
A.- B.-
C.- D.-
答案 D
解析 设bn=3an+n-7,
则S2n=b1+b2+b3+…+b2n
=3+(1+2+3+…+2n)-14n=9+2n2-13n,
又2n2-13n=22-,
当n≥4时,
∵f(n)=22-是关于n的增函数,
又g(n)=9也是关于n的增函数,
∴S8
0,∴an-an-1=1,即数列{an}是等差数列,
又2a1=2S1=a1+a,a1=1,∴an=n(n∈N*).
又x∈(1,e],∴00;③2b+bn+1bn-b=0.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
押题依据 错位相减法求和是高考的重点和热点,本题先利用an,Sn的关系求an,也是高考出题的常见形式.
解 (1)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2n-1(n∈N*),
又a1=1满足an=2n-1,
∴an=2n-1(n∈N*).
∵2b+bn+1bn-b=0,
且bn>0,∴2bn+1=bn,
∴q=,b3=b1q2=,
∴b1=1,bn=n-1(n∈N*).
(2)由(1)得cn=(2n-1)n-1,
Tn=1+3×+5×2+…+(2n-1)n-1,
Tn=1×+3×2+…+(2n-3)n-1+(2n-1)×n,
两式相减,得Tn=1+2×+2×2+…+2×n-1-(2n-1)×n
=1+2-(2n-1)×n
=3-n-1.
∴Tn=6-n-1(2n+3)(n∈N*).
13.已知数列{an}的前n项和为Sn,满足Sn=2an-1(n∈N*),数列{bn}满足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1,
(1)证明数列为等差数列,并求数列{an}和{bn}的通项公式;
(2)若cn=(-1)n-1,求数列{cn}的前2n项和T2n;
(3)若dn=an·,数列的前n项和为Dn,对任意的n∈N*,都有Dn≤nSn-a,求实数a的取值范围.
解 (1)由nbn+1-(n+1)bn=n(n+1)两边同除以n(n+1),
得-=1,
从而数列为首项=1,公差d=1的等差数列,
所以=n(n∈N*),
数列{bn}的通项公式为bn=n2.
当n=1时,S1=2a1-1=a1,所以a1=1.
当n≥2时,Sn=2an-1,Sn-1=2an-1-1,
两式相减得an=2an-1,
又a1=1≠0,所以=2,
从而数列{an}为首项a1=1,公比q=2的等比数列,
从而数列{an}的通项公式为an=2n-1(n∈N*).
(2)cn=(-1)n-1·
=(-1)n-1,
T2n=c1+c2+c3+…+c2n-1+c2n
=+--+…--
=-(n∈N*).
(3)由(1)得dn=an=n·2n-1,
Dn=1×1+2×2+3×22+…+(n-1)·2n-2+n·2n-1,
2Dn=1×2+2×22+3×23+…+(n-1)·2n-1+n·2n.
两式相减得-Dn=1+2+22+…+2n-1-n·2n=-n·2n,
所以Dn=(n-1)·2n+1,
由(1)得Sn=2an-1=2n-1,
因为对∀n∈N*,都有Dn≤nSn-a,
即(n-1)·2n+1≤n-a恒成立,
所以a≤2n-n-1恒成立,
记en=2n-n-1,所以a≤min,
因为en+1-en=-=2n-1>0,从而数列为递增数列,
所以当n=1时,en取最小值e1=0,于是a≤0.
14.设数列{an}的首项为1,前n项和为Sn,若对任意的n∈N*,均有Sn=an+k-k(k是常数且k∈N*)成立,则称数列{an}为“P(k)数列”.
(1)若数列{an}为“P(1)数列”,求数列{an}的通项公式;
(2)是否存在数列{an}既是“P(k)数列”,也是“P(k+2)数列”?若存在,求出符合条件的数列{an}的通项公式及对应的k的值;若不存在,请说明理由;
(3)若数列{an}为“P(2)数列”,a2=2,设Tn=+++…+,证明:Tn<3.
(2)解 假设存在这样的数列{an},则Sn=an+k-k,
故Sn+1=an+k+1-k,
两式相减得,an+1=an+k+1-an+k,
故an+3=an+k+3-an+k+2,
同理由{an}是“P(k+2)数列”可得,
an+1=an+k+3-an+k+2,
所以an+1=an+3对任意n∈N*恒成立.
所以Sn=an+k-k=an+k+2-k=Sn+2,
即Sn=Sn+2,
又Sn=an+k+2-k-2=Sn+2-2,
即Sn+2-Sn=2,
两者矛盾,故不存在这样的数列{an}既是“P(k)数列”,
也是“P(k+2)数列”.
(3)证明 因为数列{an}为“P(2)数列”,
所以Sn=an+2-2,
所以Sn+1=an+3-2,
故有an+1=an+3-an+2,
又n=1时,a1=S1=a3-2,
故a3=3,满足a3=a2+a1,
所以an+2=an+1+an对任意正整数n恒成立,数列的前几项为1,2,3,5,8.
故Tn=+++…+
=+++++…+,
所以Tn=++++…++,
两式相减得Tn=++++…+-=+Tn-2-,
显然Tn-20,
故Tn<+Tn,即Tn<3.