2019届二轮复习第1讲 等差数列与等比数列课件(48张)(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019届二轮复习第1讲 等差数列与等比数列课件(48张)(全国通用)

第 1 讲 等差数列与等比数列 专题二 数 列 板块三 专题突破核心考点 [ 考情考向分析 ] 1. 等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现 . 2 . 数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力 . 热点分类突破 真题押题精练 内容索引 热点分类突破 1. 通项公式 等差数列: a n = a 1 + ( n - 1) d ; 等比数列: a n = a 1 · q n - 1 . 2. 求和公式 热点一 等差数列、等比数列的运算 3. 性质 若 m + n = p + q , 在等差数列中 a m + a n = a p + a q ; 在等比数列中 a m · a n = a p · a q . 例 1   (1)(2018· 全国 Ⅰ ) 记 S n 为等差数列 { a n } 的前 n 项和,若 3 S 3 = S 2 + S 4 , a 1 = 2 ,则 a 5 等于 A. - 12 B . - 10 C.10 D.12 解析 答案 √ 解析  设等差数列 { a n } 的公差为 d ,由 3 S 3 = S 2 + S 4 , 将 a 1 = 2 代入上式,解得 d =- 3 , 故 a 5 = a 1 + (5 - 1) d = 2 + 4 × ( - 3) =- 10. 故选 B. (2)(2018· 杭州质检 ) 设各项均为正数的等比数列 { a n } 中,若 S 4 = 80 , S 2 = 8 ,则公比 q = _____ , a 5 = ________. 解析 答案 解析  由题意可得, S 4 - S 2 = q 2 S 2 ,代入得 q 2 = 9. ∵ 等比数列 { a n } 的各项均为正数, ∴ q = 3 ,解得 a 1 = 2 ,故 a 5 = 162. 3 162 在进行等差 ( 比 ) 数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于 a 1 和 d ( q ) 的方程组求解,但要注意消元法及整体计算,以减少计算量 . 思维升华 答案 解析 跟踪演练 1   (1) 设公比为 q ( q >0) 的等比数列 { a n } 的前 n 项和为 S n ,若 S 2 = 3 a 2 + 2 , S 4 = 3 a 4 + 2 ,则 a 1 等于 √ 解析  S 4 - S 2 = a 3 + a 4 = 3 a 4 - 3 a 2 , 即 3 a 2 + a 3 - 2 a 4 = 0 ,即 3 a 2 + a 2 q - 2 a 2 q 2 = 0 , 得 a 1 + a 1 q = 3 a 1 q + 2 ,解得 a 1 =- 1. 解答 (2)(2018· 全国 Ⅲ ) 等比数列 { a n } 中, a 1 = 1 , a 5 = 4 a 3 . ① 求 { a n } 的通项公式; 解  设 { a n } 的公比为 q ,由题设得 a n = q n - 1 . 由已知得 q 4 = 4 q 2 ,解得 q = 0( 舍去 ) , q =- 2 或 q = 2. 故 a n = ( - 2) n - 1 或 a n = 2 n - 1 ( n ∈ N * ). 解答 ② 记 S n 为 { a n } 的前 n 项和,若 S m = 63 ,求 m . 由 S m = 63 得 ( - 2) m =- 188 ,此方程没有正整数解 . 若 a n = 2 n - 1 ,则 S n = 2 n - 1. 由 S m = 63 得 2 m = 64 ,解得 m = 6. 综上, m = 6. 证明数列 { a n } 是等差数列或等比数列的证明方法 (1) 证明数列 { a n } 是等差数列的两种基本方法: ① 利用定义,证明 a n + 1 - a n ( n ∈ N * ) 为一常数; ② 利用等差中项,即证明 2 a n = a n - 1 + a n + 1 ( n ≥ 2 , n ∈ N * ). 热点二 等差数列、等比数列的判定与 证明 (2) 证明数列 { a n } 是等比数列的两种基本方法: 证明 = 2( a n - 1 - b n - 1 ) , 又 a 1 - b 1 = 3 - ( - 1) = 4 , 所以 { a n - b n } 是首项为 4 ,公比为 2 的等比数列 . 解答 解  由 (1) 知, a n - b n = 2 n + 1 , ① 又 a 1 + b 1 = 3 + ( - 1) = 2 , 所以 { a n + b n } 为常数数列, a n + b n = 2 , ② 联立 ①② 得, a n = 2 n + 1 , (1) 判断一个数列是等差 ( 比 ) 数列,也可以利用通项公式及前 n 项和公式,但不能作为证明方法 . 思维升华 证明 当 n ≥ 2 时,有 a n = S n - S n - 1 ,代入 (*) 式得 2 S n ( S n - S n - 1 ) - ( S n - S n - 1 ) 2 = 1 , 又当 n = 1 时,由 (*) 式可得 a 1 = S 1 = 1 , 解 答 (2) 求数列 { a n } 的通项公式; ∵ 数列 { a n } 的各项都为正数, 又 a 1 = S 1 = 1 满足上式, 解 答 当 n 为奇数时, 当 n 为偶数时, 解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解 . 热点三 等差数列、等比数列的综合问题 例 3  已知等差数列 { a n } 的公差为- 1 ,且 a 2 + a 7 + a 12 =- 6. (1) 求数列 { a n } 的通项公式 a n 与其前 n 项和 S n ; 解 答 解  由 a 2 + a 7 + a 12 =- 6 ,得 a 7 =- 2 , ∴ a 1 = 4 , 解答 (2) 将数列 { a n } 的前 4 项抽去其中一项后,剩下三项按原来顺序恰为等比数列 { b n } 的前 3 项,记 { b n } 的前 n 项和为 T n ,若存在 m ∈ N * ,使得对任意 n ∈ N * ,总有 S n < T m + λ 恒成立,求实数 λ 的取值范围 . 解  由题意知 b 1 = 4 , b 2 = 2 , b 3 = 1 , 设等比数列 { b n } 的公比为 q , ∴ { T m } 为递增数列,得 4 ≤ T m <8. 故 ( S n ) max = S 4 = S 5 = 10 , 若存在 m ∈ N * ,使得对任意 n ∈ N * ,总有 S n < T m + λ , 则 10<8 + λ ,得 λ >2. 即实数 λ 的取值范围为 (2 ,+ ∞ ). (1) 等差数列与等比数列交汇的问题,常用 “ 基本量法 ” 求解,但有时灵活地运用性质,可使运算简便 . (2) 数列的项或前 n 项和可以看作关于 n 的函数,然后利用函数的性质求解数列问题 . (3) 数列中的恒成立问题可以通过分离参数,通过求数列的值域求解 . 思维升华 解答 跟踪演练 3  已知数列 { a n } 的前 n 项和为 S n ,且 S n - 1 = 3( a n - 1) , n ∈ N * . (1) 求数列 { a n } 的通项公式; 解  由已知得 S n = 3 a n - 2 ,令 n = 1 ,得 a 1 = 1 , 又 a n + 1 = S n + 1 - S n = 3 a n + 1 - 3 a n , 解答 (2) 设数列 { b n } 满足 a n + 1 = , 若 b n ≤ t 对于任意正整数 n 都成立,求实数 t 的取值范围 . 解  由 a n + 1 = , 真题押题精练 1.(2017· 全国 Ⅰ 改编 ) 记 S n 为等差数列 { a n } 的前 n 项和 . 若 a 4 + a 5 = 24 , S 6 = 48 ,则 { a n } 的公差为 ____. 真题体验 答案 4 解析   设 { a n } 的公差为 d , 解得 d = 4. 解析 2.(2017· 浙江改编 ) 已知等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,则 “ d >0 ” 是 “ S 4 + S 6 >2 S 5 ” 的 ________ 条件 . 解析 答案 充 要 解析  方法一   ∵ 数列 { a n } 是公差为 d 的等差数列, ∴ S 4 = 4 a 1 + 6 d , S 5 = 5 a 1 + 10 d , S 6 = 6 a 1 + 15 d , ∴ S 4 + S 6 = 10 a 1 + 21 d ,2 S 5 = 10 a 1 + 20 d . 若 d >0 ,则 21 d >20 d, 10 a 1 + 21 d >10 a 1 + 20 d , 即 S 4 + S 6 >2 S 5 . 若 S 4 + S 6 >2 S 5 ,则 10 a 1 + 21 d >10 a 1 + 20 d , 即 21 d >20 d , ∴ d >0 . ∴ “ d >0 ” 是 “ S 4 + S 6 >2 S 5 ” 的充要条件 . 方法二   ∵ S 4 + S 6 >2 S 5 ⇔ S 4 + S 4 + a 5 + a 6 >2( S 4 + a 5 ) ⇔ a 6 > a 5 ⇔ a 5 + d > a 5 ⇔ d >0. ∴“ d >0 ” 是 “ S 4 + S 6 >2 S 5 ” 的充要条件 . 1 答案 解析 解析  设等差数列 { a n } 的公差为 d ,等比数列 { b n } 的公比为 q , 则由 a 4 = a 1 + 3 d , ∴ q =- 2. 32 答案 解析 解析  设 { a n } 的首项为 a 1 ,公比为 q , 押题预测 答案 解析 押题依据 押题依据  等差数列的性质和前 n 项和是数列最基本的知识点,也是高考的热点,可以考查学生灵活变换的能力 . 1. 设等差数列 { a n } 的前 n 项和为 S n ,且 a 1 >0 , a 3 + a 10 >0 , a 6 a 7 <0 ,则满足 S n >0 的最大自然数 n 的值为 A.6 B.7 C.12 D.13 √ 解析  ∵ a 1 >0 , a 6 a 7 <0 , ∴ a 6 >0 , a 7 <0 ,等差数列的公差小于零 , 又 a 3 + a 10 = a 1 + a 12 >0 , a 1 + a 13 = 2 a 7 <0 , ∴ S 12 >0 , S 13 <0 , ∴ 满足 S n >0 的最大自然数 n 的值为 12. 答案 解析 押题依据 押题依据  等差数列、等比数列的综合问题可反映知识运用的综合性和灵活性,是高考出题的重点 . 2. 在等比数列 { a n } 中, a 3 - 3 a 2 = 2 ,且 5 a 4 为 12 a 3 和 2 a 5 的等差中项,则 { a n } 的公比等于 A.3 B.2 或 3 C.2 D.6 √ 解析  设公比为 q, 5 a 4 为 12 a 3 和 2 a 5 的等差中项 , 可 得 10 a 4 = 12 a 3 + 2 a 5 , 10 a 3 q = 12 a 3 + 2 a 3 q 2 , 得 10 q = 12 + 2 q 2 , 解 得 q = 2 或 3 . 又 a 3 - 3 a 2 = 2 , 所以 a 2 q - 3 a 2 = 2 ,即 a 2 ( q - 3) = 2 ,所以 q = 2. 答案 解析 押题依据 押题依据  本题在数列、方程、不等式的交汇处命题,综合考查学生应用数学的能力,是高考命题的方向 . √ 解析  由 a 7 = a 6 + 2 a 5 ,得 a 1 q 6 = a 1 q 5 + 2 a 1 q 4 , 整理得 q 2 - q - 2 = 0 , 解得 q = 2 或 q =- 1( 不合题意,舍去 ) , 4. 定义在 ( - ∞ , 0) ∪ (0 ,+ ∞ ) 上的函数 f ( x ) ,如果对于任意给定的等比数列 { a n } , { f ( a n )} 仍是等比数列,则称 f ( x ) 为 “ 保等比数列函数 ”. 现有定义在 ( - ∞ , 0) ∪ (0 ,+ ∞ ) 上的如下函数: ① f ( x ) = x 2 ; ② f ( x ) = 2 x ; ③ f ( x ) = ; ④ f ( x ) = ln| x |. 则其中是 “ 保等比数列函数 ” 的 f ( x ) 的序号为 A. ①② B. ③④ C . ①③ D . ②④ 答案 解析 押题依据 押题依据  先定义一个新数列,然后要求根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来高考中逐渐兴起的一类问题,这类问题一般形式新颖,难度不大,常给人耳目一新的感觉 . √ ② f ( a n ) f ( a n + 2 ) = = ≠ = [ f ( a n + 1 )] 2 ; ④ f ( a n ) f ( a n + 2 ) = ln| a n |ln| a n + 2 | ≠ (ln| a n + 1 |) 2 = [ f ( a n + 1 )] 2 .
查看更多

相关文章

您可能关注的文档