- 2021-06-11 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习:专题1集合与常用逻辑用语、函数与导数 第5讲
专题一 第五讲 一、选择题 1.(文)(2013·郑州市质检)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=( ) A.1 B.-1 C.-e-1 D.-e [答案] C [解析] 依题意得,f′(x)=2f′(e)+,取x=e得f′(e)=2f′(e)+,由此解得f′(e)=-=-e-1,故选C. (理)(2013·云南检测)已知常数a、b、c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′(x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是( ) A.- B. C.2 D.5 [答案] C [解析] 依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=, ∴b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C. 2.(文)(2014·长春市调研)已知函数f(x)=x2的图象在点A(x1,f(x1))与点B(x2,f(x2))处的切线互相垂直,并交于点P,则点P的坐标可能是( ) A.(-,3) B.(0,-4) C.(2,3) D. (1,-) [答案] D [解析] 由题意知,A(x1,x),B(x2,x),f′(x)=2x,则过A,B两点的切线斜率k1=2x1,k2=2x2,又切线互相垂直,所以k1k2=-1,即x1x2=-.两条切线方程分别为l1∶y=2x1x-x,l2∶y=2x2x-x ,联立得(x1-x2)[2x-(x1+x2)]=0,∵x1≠x2,∴x=,代入l1,解得y=x1 x2=-,故选D. (理)在函数y=x3-9x的图象上,满足在该点处的切线的倾斜角小于,且横、纵坐标都为整数的点的个数是( ) A.0 B.1 C.2 D.3 [答案] A [解析] 依题意得,y′=3x2-9,令0查看更多