- 2021-06-11 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018-2019学年江苏省启东中学高一下学期期中考试 数学试题
2018-2019学年江苏省启东中学高一下学期期中考试 数学试题 一、选择题:本大题共10小题,每小题5分,共50分.请把答案直接填涂在答题卡相应 位置上. 1.直线xsinα + y + 2 = 0的倾斜角的取值范围是( ▲ ) A. B. C. D. 2.设△ABC 的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=( ▲ ) A. B. C. D.或 3.平面α∥平面β,直线aα,bβ,那么直线a与直线b的位置关系一定是( ▲ ) A.平行 B.异面 C.垂直 D.不相交 4.经过点P(-1,2),并且在两坐标轴上的截距的绝对值相等的直线有( ▲ ) A.0条 B.1条 C.2条 D.3条 5.在△ABC中,若AB=7,BC=8,CA=7,则( ▲ ) A.19 B.-19 C.38 D.-38 6.已知圆M与直线3x - 4y = 0及3x - 4y + 10 = 0都相切,圆心在直线y = - x - 4上,则圆M的方程为( ▲ ) A.(x+3)2+(y-1)2=1 B.(x-3)2+(y+1)2=1 C.(x+3)2+(y+1)2=1 D.(x-3)2+(y-1)2=1 7.在△ABC中,若b=8,c=5,且,则=( ▲ ) A.30° B.90° C.150° D.30°或150° 8.下列四个命题中正确的是( ▲ ) ① 如果一条直线不在某个平面内,那么这条直线就与这个平面平行; ② 过直线外一点有无数个平面与这条直线平行; ③ 过平面外一点有无数条直线与这个平面平行; ④ 过空间一点必存在某个平面与两条异面直线都平行. A.①④ B.②③ C.①②③ D.①②③④ 9.已知△ABC中,A=45°,a=1,若△ABC仅有一解,则b∈( ▲ ) A. B. C. D. 10.在平面直角坐标系xOy中,圆C1:(x+1)2+(y-6)2=25,圆C2:(x-17)2+(y-30)2=r2.若圆C2上存在一点P,使得过点P可作一条射线与圆C1依次交于点A,B,满足PA=AB,则半径r的取值范围是( ▲ ) A.(15,45) B.[15,45] C.(5,55) D.[5,55] 二、填空题:本大题共6小题,每小题5分,共30分.请把答案直接填写在答题卡相应 位置上. 11.三条直线两两平行,则过其中任意两条直线最多共可确定 ▲ 个平面. 12.若直线x+ay=2a+2与直线ax+y=a+1平行,则实数a的值为 ▲ . 13.如果用半径为的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于 ▲ . 14.在△ABC中,,则△ABC是 ▲ 三角形. 15.设集合,,当时, 则实数的取值范围是 ▲ . 16.若不等式ksin2B+sinAsinC>17sinBsinC对任意△ABC都成立,则实数k的最小值为 ▲ . 三、解答题:本大题共6小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. D1 C1 B1 A1 E D C B A 17.(本小题满分10分) 如图,在正方体ABCD-A1B1C1D1中,E为棱DD1的中点. 求证:(1)∥平面EAC; (2)平面EAC⊥平面. 18.(本小题满分12分) 在△ABC中,角A,B,C的对边分别为a,b,c,tanC=. (1)求角C的大小; (2)若△ABC的外接圆直径为1,求a2+b2的取值范围. 19.(本小题满分12分) 如图,甲船以每小时30海里的速度向正北方航行,乙船按固定方向匀 速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里? 20.(本小题满分12分) 在直角坐标系中,已知射线,,过点作直线分别交射线于点. (1)当的中点为时,求直线的方程; (2)当的中点在直线上时,求直线的方程. 21.(本小题满分12分) 已知四边形ABCD是圆O的内接四边形,AB=2,BC=6,AD=CD=4,求四边形ABCD的面积. 22.(本小题满分12分) 在平面直角坐标系xOy中,已知圆C经过A(0,2),O(0,0),D(t,0),(t>0)三点,M是线段AD上的动点,l1,l2是过点B(1,0)且互相垂直的两条直线,其中l1交y轴于点E,l2交圆C于P、Q两点. (1)若t=PQ=6,求直线l2的方程; (2)若t是使AM≤2BM恒成立的最小正整数,求三角形EPQ的面积的最小值. 江苏省启东中学2018-2019学年度第二学期期中考试 高一数学答案 一、选择题 BADDB,CDBCB D1 C1 B1 A1 O E D C B A 二、填空题 11.3; 12.1; 13.; 14.等腰直角; 15. r≥3; 16. 81 三、解答题 17.(本小题满分10分) 证明:(1)连结BD,BD与AC交于点O,连结OE ∵ O,E分别是BD和DD1的中点, ∴ EO∥BD 1, ………………2分 又BD1平面EAC,OE平面EAC, ∴∥平面EAC. ………………4分 (2)∵ 正方体ABCD-A1B1C1D1, ∴ DD1⊥平面ABCD, ∴ DD1⊥AC. ∵ AC⊥BD. 又 , ∴ AC⊥平面DD1B, ∴ BD1⊥AC …………6分 ∵ EO∥BD 1∴ EO⊥AC.同理可证EO⊥AB1. 又, ∴ EO⊥平面 …………8分 ∵ OE平面EAC, ∴平面EAC⊥平面. …………10分 18.(本小题满分12分) 解:(1)因为tanC=,即=, ………………2分 所以sinCcosA+sinCcosB=cosCsinA+cosCsinB, 即sinCcosA-cosCsinA=cosCsinB-sinCcosB, 得sin(C-A)=sin(B-C). ………………4分 所以C-A=B-C,或C-A=π-(B-C) (不成立).即2C=A+B, 得C=.……… 6分 (2)由C=,设A=+α,B=-α,0查看更多
相关文章
- 当前文档收益归属上传用户