【数学】2020届数学(理)一轮复习人教版:第八章第八节 曲线与方程作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届数学(理)一轮复习人教版:第八章第八节 曲线与方程作业

限时规范训练(限时练·夯基练·提能练)‎ A级 基础夯实练 ‎1.(2018·云南质量检测)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为(  )‎ A.x2+y2=2       B.x2+y2=4‎ C.x2+y2=2(x≠±) D.x2+y2=4(x≠±2)‎ 解析:选D.MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,2为半径的圆,除去与x轴的两个交点,即P的轨迹方程为x2+y2=4(x≠±2),故选D.‎ ‎2.(2018·湖北荆门调考)已知θ是△ABC的一个内角,且sin θ+cos θ=,则方程x2sin θ-y2cos θ=1表示(  )‎ A.焦点在x轴上的双曲线 B.焦点在y轴上的双曲线 C.焦点在x轴上的椭圆 D.焦点在y轴上的椭圆 解析:选D.因为(sin θ+cos θ)2=1+2sin θcos θ=,所以sin θcos θ=-<0,又sin θ+cos θ=>0,所以sin θ>-cos θ>0,故>>0,而x2sin θ-y2cos θ=1可化为+=1,故方程x2sin θ-y2cos θ=1表示焦点在y轴上的椭圆.‎ ‎3.(2018·浙江杭州七校质量检测)已知F1,F2是双曲线的两个焦点,Q是双曲线上任意一点,从焦点F1引∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹为(  )‎ A.直线 B.圆 C.椭圆 D.双曲线 解析:选B.不妨设点Q在双曲线的右支上,延长F1P交直线QF2于点S,∵QP是∠F1QF2的平分线,且QP⊥F1S,∴P是F1S的中点.∵O是F‎1F2的中点,∴PO是△F1SF2的中位线,∴|PO|=|F2S|=(|QS|-|QF2|)=(|QF1|-|QF2|)=a,∴点P的轨迹为圆.‎ ‎4.(2018·湖北武汉调研)已知不等式3x2-y2>0所表示的平面区域内一点P(x,y)到直线y=x和直线y=-x的垂线段分别为PA,PB,若△PAB的面积为,则点P的轨迹的一个焦点坐标可以是(  )‎ A.(2,0) B.(3,0)‎ C.(0,2) D.(0,3)‎ 解析:选A.不等式3x2-y2>0⇒(x-y)(x+y)>0⇒或其表示的平面区域如图中阴影部分所示.点P(x,y)到直线y=x和直线y=-x的距离分别为|PA|==,|PB|==,‎ ‎∵∠AOB=120°,∴∠APB=60°,‎ ‎∴S△PAB=×|PA|×|PB|sin 60°=×,又S△PAB=,‎ ‎∴×=,∴3x2-y2=3,即x2-=1,‎ ‎∴P点的轨迹是双曲线,其焦点为(±2,0),故选A.‎ ‎5.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若=λ·,其中λ为常数,则动点M的轨迹不可能是(  )‎ A.圆 B.椭圆 C.抛物线 D.双曲线 解析:选C.以AB所在直线为x轴,AB的中垂线为y轴,建立平面直角坐标系,设M(x,y),A(-a,0),B(a,0),则N(x,0).因为=λ·,‎ 所以y2=λ(x+a)(a-x),即λx2+y2=λa2,‎ 当λ=1时,轨迹是圆;‎ 当λ>0且λ≠1时,轨迹是椭圆;‎ 当λ<0时,轨迹是双曲线;‎ 当λ=0时,轨迹是直线.‎ 综上,动点M的轨迹不可能是抛物线.‎ ‎6.设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,=+,则点M的轨迹方程为(  )‎ A.+=1 B.+=1‎ C.+=1 D.+=1‎ 解析:选A.设M(x,y),A(x0,0),B(0,y0),由=+,得(x,y)=(x0,0)+(0,y0),则解得 由|AB|=5,得+=25,‎ 化简得+=1.‎ ‎7.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为-,则点P的轨迹方程是________.‎ 解析:由=-,知x+2y=-5,即x+2y+5=0.‎ 答案:x+2y+5=0‎ ‎8.在平面直角坐标系中,O为坐标原点,A(1,0),B(2,2),若点C满足=+t(-),其中t∈R,则点C的轨迹方程是________.‎ 解析:设C(x,y),则=(x,y),+t(-)=(1+t,2t),所以消去参数t得点C的轨迹方程为y=2x-2.‎ 答案:y=2x-2‎ ‎9.已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________.‎ 解析:设抛物线焦点为F,过A,B,O作准线的垂线AA1,BB1,OO1,则|AA1|+|BB1|=2|OO1|=4,由抛物线定义得|AA1|+|BB1|=|FA|+|FB|,所以|FA|+|FB|=4,故F点的轨迹是以A,B为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线焦点的轨迹方程为+=1(y≠0).‎ 答案:+=1(y≠0)‎ ‎10.(2018·郑州市第一次质量预测)已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.‎ ‎(1)求点M的轨迹方程,并说明轨迹是什么图形;‎ ‎(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.‎ 解:(1)由题意,得=5,‎ 即=5,‎ 化简,得x2+y2-2x-2y-23=0,‎ 所以点M的轨迹方程是(x-1)2+(y-1)2=25.‎ 轨迹是以(1,1)为圆心,以5为半径的圆.‎ ‎(2)当直线l的斜率不存在时,l:x=-2,‎ 此时所截得的线段长度为2=8,‎ 所以l:x=-2符合题意.‎ 当直线l的斜率存在时,设l的方程为y-3=k(x+2),‎ 即kx-y+2k+3=0,圆心(1,1)到直线l的距离 d=,‎ 由题意,得+42=52,解得k=.‎ 所以直线l的方程为x-y+=0,‎ 即5x-12y+46=0.‎ 综上,直线l的方程为x=-2或5x-12y+46=0.‎ B级 能力提升练 ‎11.若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0),距离之差的绝对值为8,则称曲线C为“好曲线”.以下曲线不是“好曲线”的是(  )‎ A.x+y=5       B.x2+y2=9‎ C.+=1 D.x2=16y 解析:选B.因为M到平面内两点A(-5,0),B(5,0)距离之差的绝对值为8,所以M的轨迹是以A(-5,0),B(5,0)为焦点的双曲线,方程为-=1.A项,直线x+y=5过点(5,0),满足题意,为“好曲线”;B项,x2+y2=9的圆心为(0,0),半径为3,与M的轨迹没有交点,不满足题意;C项,+=1的右顶点为(5,0),满足题意,为“好曲线”;D项,方程代入-=1,可得y-=1,即y2-9y+9=0,所以Δ>0,满足题意,为“好曲线”.‎ ‎12.已知正方体ABCDA1B‎1C1D1的棱长为1,点M在AB上,‎ 且AM=,点P在平面ABCD内,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点P的轨迹是(  )‎ A.直线 B.圆 C.双曲线 D.抛物线 解析:选D.在平面ABCD内过点P作PF⊥AD,垂足为F,过点F在平面AA1D1D内作FE⊥A1D1,垂足为E,连接PE,则有PE⊥A1D1,即PE为点P到A1D1的距离.‎ 由题意知|PE|2-|PM|2=1,‎ 又因为|PE|2=|PF|2+|EF|2,‎ 所以|PF|2+|EF|2-|PM|2=1,‎ 即|PF|2=|PM|2,即|PF|=|PM|,‎ 所以点P满足到点M的距离等于点P到直线AD的距离.‎ 由抛物线的定义知点P的轨迹是以点M为焦点,‎ AD为准线的抛物线,‎ 所以点P的轨迹为抛物线.‎ ‎13.已知圆O的方程为x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为(  )‎ A.-=1(x≠0) B.+=1(x≠0)‎ C.-=1(y≠0) D.+=1(y≠0)‎ 解析:选D.设抛物线C的焦点为F(x,y),准线为l,过点A,B,O分别作AA′⊥l,BB′⊥l,OP⊥l,其中A′,B′,P分别为垂足,则l为圆的切线,P为切点,且|AA′|+|BB′|=2|OP ‎|=6.因为抛物线过点A,B,所以|AA′|=|FA|,|FB|=|BB′|,‎ 所以|FA|+|FB|=|AA′|+|BB′|=6>|AB|=2,‎ 所以点F的轨迹是以A,B为焦点的椭圆,‎ 且点F不在x轴上,所以抛物线C的焦点F的轨迹方程为+=1(y≠0).‎ ‎14.如图,已知△ABC的两顶点坐标A(-1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.则曲线M的方程为________.‎ 解析:由题知|CA|+|CB|=|CP|+|CQ|+|AP|+|BQ|=2|CP|+|AB|=4>|AB|,‎ 所以曲线M是以A,B为焦点,长轴长为4的椭圆(挖去与x轴的交点).‎ 设曲线M的方程为+=1(a>b>0,y≠0),‎ 则a2=4,b2=a2-=3,所以曲线M:+=1(y≠0)为所求.‎ 答案:+=1(y≠0)‎ ‎15.(2018·安徽合肥检测)已知M为椭圆C:+=1上的动点,过点M作x轴的垂线,垂足为D,点P满足=.‎ ‎(1)求动点P的轨迹E的方程;‎ ‎(2)若A,B两点分别为椭圆C的左、右顶点,F为椭圆C的左焦点,直线PB与椭圆C交于点Q,直线QF,PA的斜率分别为kQF,kPA,求的取值范围.‎ 解:(1)设P(x,y),M(m,n),依题意知D(m,0),且y≠0.‎ 由=,得(m-x,-y)=(0,-n),‎ 则有⇒ 又M(m,n)为椭圆C:+=1上的点,‎ ‎∴+=1,即x2+y2=25,‎ 故动点P的轨迹E的方程为x2+y2=25(y≠0).‎ ‎(2)依题意知A(-5,0),B(5,0),F(-4,0),设Q(x0,y0),‎ ‎∵线段AB为圆E的直径,‎ ‎∴AP⊥BP,设直线PB的斜率为kPB,则kPA=-,‎ ==-kQFkPB=-kQFkQB=-·=-=- ‎===,‎ ‎∵点P不同于A,B两点且直线QF的斜率存在,‎ ‎∴-5<x0<5且x0≠-4,‎ 又y=在(-5,-4)和(-4,5)上都是减函数,‎ ‎∴∈(-∞,0)∪,‎ 故的取值范围是(-∞,0)∪.‎
查看更多

相关文章

您可能关注的文档